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WELCOME

A warm welcome to all delegates to the 30th annual meeting of the British and Irish

Chapter of the International Society of Magnetic Resonance in Medicine (BIC-ISMRM).

This year’s meeting takes place on the verdant campus of the University of Sussex, and is
hosted by the Brighton and Sussex Medical School (BSMS), a top-notch medical school
sponsored by University of Sussex and University of Brighton. Since the inception of the
Clinical Imaging Sciences Centre in 2006, both Universities as well as BSMS have been hubs
for innovative MRI research. CISC has been a beacon of neuroimaging research, generating
stellar research output that ranges from methodological innovations in quantitative MR to
collaborative work with the vast and diverse group of neuroimaging researchers across both
campuses. Collaborative research extends beyond campus limits, and CISC researchers are

engaged in collaborations with groups across the country and abroad.

The meeting program reflects the vast range and high quality of MR research across the UK
and Ireland: human, animal and in vitro systems; focus on brain, heart and a variety of other
organs; from basic science to clinical applications; methodological innovations in acquisition,
processing and analysis; a wide variety of observed nuclei and finally - a massive range of
magnetic fields. There is something for everyone, and we hope that the annual meeting, as
well as the workshop that precedes it, will fulfill their purpose as highly enjoyable

opportunities to learn, network, meet old friends and make new ones.

We are thankful to the BIC-ISMRM board for choosing us to host the annual meeting of the
BIC-ISMRM, and are looking forward to hosting all delegates and invited speakers in

Brighton for this exciting event.

Prof. ltamar Ronen

Chair of the Local Organising Committee
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DAY ONE
WORKSHOP

Advanced in vivo MRS Methods for Studying Metabolism,
Physiology and Cytomorphology

Jeanine Prompers,

University Medical Center Utrecht
and Maastricht University,

The Netherlands

Advances in Phosphorus and Deuterium

Metabolic Imaging: Paving the Way
to Clinical Translation

Prof. Dr. Prompers is Professor of Organ-Specific Metabolic Imaging in the
Department of Human Biology at the NUTRIM Institute of Nutrition and
Translational Research in Metabolism of Maastricht University Medical Centre+.
Her research focuses on the development of multi-nuclear MRS and MRI
methods for the in vivo study of tissue metabolism in metabolic diseases. She has
a strong track record on the application of ultra-high field MRS to measure
energy and lipid metabolism in skeletal muscle, liver and heart, in particular in the
setting of obesity-related diseases. She is one of the pioneers of deuterium
metabolic imaging and was the first to perform this technique in human brain and
liver at ultra-high field. Since 2024,

Prof. Prompers is also CEO of Scannexus, the ultra-high field MRI facility on the
Brightlands campus in Maastricht. Prof. Prompers has published over 90 papers
and has supervised |5 PhD students as (co-)promotor.




Assaf Tal,

Aviv University, Israel

Having the Spectroscopic Cake and Eating It
Too: The Case for Multiparametric MRS

\

Prof. Assaf Tal graduated with a B.Sc. in physics from the Hebrew

University in 2001 before gradually taking an interest in biomedical imaging and
neurophysiology. Following a postdoctoral stay at NYU in 2013, he has served as
a faculty member at the Weizmann Institute and NYU School of Medicine before
recently joining the School of Biomedical Engineering at

Tel-Aviv University in 2024, where his lab focuses on developing new MRS neuro-
imaging methodologies for understanding brain plasticity and motor learning, as
well as measuring changes to cellular morphology and

composition

Myriam M. Chaumeil,

Nvision Imaging Technologies, Germany
& Ulm University, Germany & University
of California San Francisco, USA

Advances in Hyperpolarized 13C MR:
Emerging technologies and Applications in
Neurological Disorders

Myriam Chaumeil is the Head of Research, HP MRI applied science, at NVi-
sion Imaging Technologies, as well as Adjunct Professor at the University of Cali-
fornia San Francisco, and Honorary Professor at Ulm University. She received her
PhD in Physics from the University of Paris-Sud. Her expertise is on developing
and validating Hyperpolarized |3C-MR based methods for in vivo measurement
of metabolism, in physiological and pathological conditions, in preclinical models
and in patients. She has experience in studies of glioblastoma, Huntington’s disease,
Multiple Sclerosis, Alzheimer’s disease, Traumatic Brain Injury, cerebral small vascu-
lar diseases and CNS lymphoma.



Paul Mullins,
Bangor University, UK

Using MRS to probe cerebral function and
physiology - examples from research in hypoxia

Paul Mullins is Professor of Neuroimaging and Senior Physicist at the Bangor Imaging
Centre in the School of Psychology and Sports Science.

Paul’s research falls into three broad areas: the use of magnetic resonance imaging and
spectroscopy to investigate basic neurologic and physiologic processes in health and
disease; the use of these techniques to measure changes associated with
neurotransmission and neural activity in health and disease; and investigating the impacts
of physiologic challenges (e.g. hypoxia, concussion, exercise) on the brain.

Paul also interacts with colleagues from the College of Medicine and Health Sciences on
MRI study design, data acquisition and processing and the resources available to help with
their research questions, and his aim is to keep the Bangor Imaging Unit a world-class
centre for neuroimaging research in North Wales.

ltamar Ronen,
Brighton and Sussex Medical School, UK

And Yet They Move — What Does Metabolite
Diffusion Tell Us About Cell Structure and

physiology?

Itamar obtained his PhD in Physical Chemistry from Tel Aviv University, where he
worked with on developing a method for indirect NMR detection of 17-O with potential
for metabolic imaging. He did his post-doctoral research at the Centre for Magnetic
Resonance Research at the University of Minnesota, where he developed a strong
interest in diffusion-based contrast in MR. [tamar obtained his first academic position at
the Boston University School of Medicine, where he developed an interest in metabolite
diffusion as potential marker for cell-specific microstructure and metabolism. In 2009
Itamar moved to the Netherlands, where he joined the Gorter Center for MRI at the
Leiden University Medical Center (LUMC) as Associate Professor of Radiology,
developing spectroscopic methods for ultrahigh and ultralow field MR. He moved to
Brighton in the UK in 2021, where he holds the positions of Academic Director of the
Clinical Imaging Science Centre (CISC) and Chair in Medical Physics at the Brighton and
Sussex Medical School.



DAYS TWO & THREE
Annual Meeting

Plenary Speaker:

Bill Moore Lecture:
Prof Mark Lythgoe,

University College London

Prof Mark Lythgoe is the Founder and Director of the Centre for Advanced
Biomedical Imaging (CABI) at UCL, which is a multidisciplinary research centre for
experimental imaging. The Centre now hosts |2 state-of-the-art imaging
modalities and 50 researchers. Mark is also Deputy Director of the UCL
Department of Imaging and Director of Biomedical Imaging Research at the
Francis Crick Institute.

Mark has a long-standing track record in the development and application of
biomedical imaging techniques and has been awarded £45 million for his
collaborative programme of imaging research. He has published over 300 papers
including publications in Nature, Nature Photonics, Nature Medicine and The
Lancet. Mark has translated his research findings into clinical radiological practice
and established a training programme with University College Hospital in
biomedical imaging. He is Co-director of MSc in Advanced Biomedical Imaging and
Co-founder the UCL Centre for Doctoral Training in Medical Imaging.

In 2023, Mark was awarded the prestigious IET Achievement Medal for a major
and distinguished contribution in Medical Imaging; the award was presented at
the ‘Global Engineering Oscars’ by the Institution of Engineering and Technology.
In 2021, Mark received the Royal Society of Medicine Ellison—Cliffe Award, for

his contribution of fundamental science to the advancement of medicine. In 2013
Mark received the Davies Medal from the Royal Photographic Society for a
significant contribution to the field of imaging science. Mark has also received the
Alumni Achievement Award, which is given to the University of Salford’s most
notable and successful graduates.

Mark is committed to the public engagement of science. During his tenure as
Director of the Cheltenham Science Festival, it has become one of the largest
science festivals in the world. For his contributions to communicating science,
Mark was awarded the Neuroscience Prize for Public Understanding from the
British Neuroscience Association, Dorothy Hodgkin Award, Biosciences Federa-
tion Science Communication Award and was made a Fellow of the British Science
Association.




Session Moderators

Session 1: MRI & MRS: Brain Physiology

LOUI'CI qukes, With a background in both physics (MPhys Oxford,
Univers”’y of Manchester 1997) and neuroscience (MSc, UCL 1999) Laura’s
research is focussed on developing novel methodology
to study brain function. Following a PhD on
quantitative measurements of cerebral blood flow
(UCL, 2002), Laura moved to the Netherlands to
|complete postdoctoral research using fMRI and MEG.
In 2005 she returned to the UK first to the University
of Liverpool and, since 2008, the Manchester
University. One principle area of reseach concerns
mechanisms of brain plasticity following a New
Investigators Award from the Medical Research
Council in 2006. Laura continues to study the cerebro-
vascular system, and has developed quantitative
measurements of cerebral blood flow, microvessel
structure, oxygen metabolism and blood-brain barrier
integrity. Key applications are in ageing, cerebral small
vessel disease, stroke, Parkinson’s disease and
Alzheimer’s Disease with an aim to understand
mechanisms of cognitive decline.

Session 2: MRI: Image Analysis and Machine Learning

Ivor is an Associate Professor in Artificial Intelligence Iv,or s,lmpson'
within the Al research group in the department of University of Sussex
Informatics. He is also the Academic Lead for Sussex
Al and the convenor of the MRes in Advanced Artificial
Intelligence.

Ivor’s research focuses on the development of novel
machine learning and statistical inference methodologies
applied to imaging and temporal data, with a particular
interest in applications in medical image analysis,
computer vision and ecological monitoring. Ivor’s team
aims to create methods that reliably characterise the
uncertainty in predictions, require fewer labelled data,
and offer a greater degree of interpretability than classic
deep learning approaches. He is currently the primary
supervisor for 6 PhD students in these areas, and
secondary supervisor for several others. Much of Ivor’s
research requires interdisciplinary collaboration, and

he works closely with a variety of colleagues across the
university and externally. He is also open to new
academic and industrial collaborations in areas related
to his research.




Session 3: MRl and MRS: Preclinical Studies and Cancer

Bernard Siow,
Francis Crick Institute

Dr. Bernard Siow is the Head of MRI at the In
Vivo Imaging (IVI) facility at the Francis Crick Institute,
where he oversaw the design and development of the
MRI unit and the installation of its preclinical scanner.
His passion lies in using the principles of MRI physics to
push the boundaries of diffusion MRI and
microstructure imaging to answer fundamental
biomedical questions. He has a particular interest in
developing advanced techniques, including double
diffusion encoding and diffusion-weighted magnetic
resonance spectroscopy. Given the breadth of cancer
expertise and research at the Crick, he has found this
collaborative environment particularly enriching for his
work.

Session 4: MRI, MRS and other modalities: Neuro

Professor Poptani is the Chair of the Centre for quISh Poptqnl'
Preclinical Imaging (CPI) at the University of University of Liverpool
Liverpool with a research focus on developing
cutting-edge non-invasive imaging biomarkers for as-
sessing early treatment response in cancer. His work
is highly translational in nature and his group has been
credited with identifying several imaging

markers for diagnosis or early treatment response
which are currently used in the clinic.

He has published 162 papers and was awarded the
Senior Fellowship from the International Society of
Magnetic Resonance in Medicine (ISMRM) for his
significant contributions to the field in 2021. He
currently serves as the Chair of the British and Irish
chapter of ISMRM. His research has been funded by
various grants including funding from the UKRI as well
as UK based charities such as the Wellcome Trust and
the North West Cancer Research.




Session 5: Body MRI and MRS
MODERATOR: Jeanine Prompers (See Workshop for bio)

Session 6: Hardware, pulse and protocol design

Mara Cercignani,
Cardiff University

Professor Mara Cercignhani is Head of MR| at
the Cardiff University Brain Research Imaging Centre.
She earned her engineering degree from Politecnico di
Milano and her PhD from University College London.
Her expertise lies in quantitative MRl—especially
diffusion MRI and magnetization transfer imaging—
with a focus on translating imaging physics into clinical
applications. Her research spans neurodegeneration,
neuroinflammation, and psychiatric conditions.

Since 2019, Professor Cercignani has been a Senior
Fellow of the International Society for Magnetic
Resonance in Medicine (ISMRM) and has served as a
Deputy Editor for Magnetic Resonance in Medicine
since 2014. She has published over 200 papers in
peer-reviewed journals, and several book chapters. She
edited the text “Quantiative MRI of the Brain:
Principles of Physical Measurement”.







Session 1: MRI & MRS: Brain Physiology

Evaluation of Single Breath-Hold Calibrated fMRI for Baseline CMRO; and OEF
Measurement in Grey Matter.

Elizabeth J. Fear'?, Davide Di Censo¥?, Sara Pomante'?, Francesca Graziano?, Manuela Carriero*?,
Stefano Censi'?, Emma Biondetti'?, Alessandra S. Caporale?, Valentina Tomassini'?, Antonello M.
Chiarelli*?, Richard G. Wise'?
!Department of Neuroscience, Imaging, and Clinical Sciences, University G. d’Annunzio of Chieti-
Pescara, Chieti, Italy
’Institute for Advanced Biomedical Technologies (ITAB), University G. d’Annunzio of Chieti-Pescara,
Chieti, Italy

Introduction: The cerebral metabolic rate of oxygen consumption (CMRO;) is a key indicator of
neuronal activity energy expenditure whilst oxygen extraction fraction (OEF) represents the fraction
of oxygen extracted from the blood by the brain, reflecting the balance between oxygen supply and
demand. These two parameters may be altered in neurological conditions where blood supply or
oxygen metabolism is compromised [1].

The recently developed technique of breath-hold calibrated fMRI (BHC-fMRI) can be used to map
CMRO; and oxygen extraction (OEF) in the human brain [2]. Measurements of BOLD and arterial spin
labelling (ASL) cerebral blood flow (CBF) signals are made during repeated BHs that induce cyclic
hypercapnia and thus vasodilation. An oxygen transport model combined with a phenomenological
model of the BOLD signal are used to estimate OEF and CMRO,. We have previously demonstrated
the use of a dual excitation pseudo-continuous arterial spin labelling (DEXI)pCASL sequence enabling
simultaneous BOLD and ASL acquisitions during 10 BH repetitions over an 11-minute acquisition
window [3]. This approach provides robust mapping of CMRO; without the need for external gas
challenges. Here we investigate the possibility of estimating global grey matter (GM) OEF and CMRO;
from single breath-holds with the aim of reducing acquisition times and understanding the stability of
the estimated parameters. Eventually a streamlined approach would minimise participant burden,
thereby increasing tolerance and compliance in patient populations.

Methods: MRI acquisition: Data were acquired on 53 healthy subjects (26 females, 27 males; age: 33
+ 6 years) using a 3T MAGNETOM Prisma scanner (Siemens Healthineers AG, Forchheim, Germany)
with a 32-channel receive-only head coil. The protocol included a T1-weighted MP2RAGE scan for
anatomical reference (1mm isotropic resolution), an Inversion Recovery (IR) sequence with GE-EPI
readout to calculate haemoglobin concentration from the blood of the sagittal sinus and a DEXI pCASL
acquisition to collect, during BH cycles, simultaneous ASL (TE1=10 ms) and GE-EPI BOLD (TE2=30 ms)
data in the transverse plane (TR=4400ms, FA=90°, matrix=64*64*15, res=3.4*3.4*7mm, GRAPPA=3,
PF=1, Labelling duration=1500ms, Post labelling delay=1500ms). Pre-labelling saturation and two
inversion pulses for background suppression were included. Mo images were acquired in blip-up/blip-
down modality for field distortion correction. Subjects performed 10 repeated BHs with a 20s/40s
BH/recovery cycle. CO, and O, end-tidal traces were recorded using a nasal cannula through a
sampling line into a gas analyser system (ADInstruments, Dunedin, New Zealand). Resting data were
collected for 44s before BHs began to enable estimation of baseline CBF. MRI pre-processing:
MP2RAGE was used for spatial normalization into MNI space using Syn transformations
(antsRegistration, ANTs) and for tissue segmentation (FAST, FSL). The two Mgs were used for
susceptibility distortion (Topup,FSL) and intensity correction (N4biasfieldcorrection, ANTs). The Mg
corrected image was registered with the T1-weighted image and the transformation matrix inverted
to bring the grey matter (GM) partial volume into the My space and thresholded at 0.5 to obtain a GM
mask. GE BOLD-ASL fMRI images were preprocessed using FSL-FLIRT for motion correction. The motion
corrected versions were registered to Mg and then distortion corrected (ApplyTopup,FSL). CMRO; and
OEF analysis: BOLD/ASL data and CO, end-tidal partial pressure (PerCO,) traces collected during
repeated BH were truncated into individual BHs, corresponding to data samples of 60s, and used to
calculate CMRO; and OEF in the GM using a modified Davis model [2] with both the global BOLD signal
and PerCO; traces used as separate regressors to identify BH induced signal variation.



Results: Results show (Fig.1a) mean CMRO; = 110.3+2.3 umol/100g/min (BOLD-regressor) and
108.8+2.3 umol/100g/min (PerCO,-regressor) and (Fig.1b) mean OEF = 0.346+0.006 (BOLD-regressor)
and 0.338+0.006 (PerCO,-regressor) across the 10 individual BHs. These are compared with values of
OEF = 0.366x0.007 (BOLD-regressor) 0.356+0.007 (PerCO»>-regressor) and CMRO, = 120.3+2.5
pumol/100g/min (BOLD regressor) 118.1+2.6 umol/100g/min (PerCO.-regressor) using the combined
10 BHs together.
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Fig. 1. Calculated baseline CMRO; and OEF average values across GM using calibrated fMRI data from
10 single BHs across 53 healthy controls. (a) CMRO; and (b) OEF calculated using individual breath-
holds (1-10) using the BOLD signal as regressor (blue) and PeCO; as regressor (red) for identifying BH-
induced signal variation. Light colours identify standard deviation, and bold colours identify standard
error values across subjects

Discussion: The relative consistency of global grey matter CMRO; and OEF values calculated using
each single BH suggests that one BH may be sufficient. However, there is a small bias (approximately
6% underestimate) when comparing to estimates made from all 10 BHs together. The agreements
between estimates achieved using the global BOLD signal as a regressor and those using PeCO; as
regressor to identify BH-induced signal variation, suggest that CO, monitoring may not be essential.
The quality of OEF and CMRO; maps from single breath-holds remains to be explored.

Conclusions: We present a simplified protocol that permits estimation of absolute baseline of CMRO,
and OEF in global GM using just one BH potentially without CO, monitoring, which would greatly
decrease MRI scan time and the demands made on participants undergoing the procedure.

Acknowledgements: Funding provided by the following projects:

1) European Union-NextGenerationEU (NGEU)- Italian Ministry of University and Research (MUR), National Plan for Recovery and Resilience (PNRR)
and Projects of National Relevance (PRIN), Project Code: P2022ESHT4, Project Title: “Advancing MRI biomarkers of brain tissue microstructure and
energetics in Multiple Sclerosis.” Funding call No. 1409 of 14.09.2022, Concession decree No. 1367 of 01.09.2023 adopted by MUR, ERC Panel LS5
“Neuroscience and Disorders of the Nervous System”. CUP: D53D23019210001; 2) NGEU PNRR, Mission 4 Component 2 — M4C2, Investment 1.5 -
Call for tender No. 3277 of 30.12.2021 MUR Award Number: ECS00000041, Project Title: “VITALITY - Innovation, digitalization and sustainability for
the diffused economy in Central Italy,” Concession Decree No. 1057 of 23.06.2022 adopted by MUR. CUP D73C22000840006; 3) NGEU MUR,
Research National Program (PNR) and PRIN, Project Code: 2022BERM2F, Project Title: “Mapping Mitochondrial Function and Oxygen Metabolism in
the Human Brain with Magnetic Resonance Imaging.” Funding call No. 104 of 02.02.2022, Concession decree No. 1065 of 18.07.2023 adopted by
MUR, ERC Panel LS7 “Prevention, Diagnosis and Treatment of Human Diseases”. CUP: D53D23013410001
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Session 1: MRI & MRS: Brain Physiology

Resting-State Functional Electrical Properties Tomography (rsfEPT)
Jierong Luo and Karin Shmueli
Department of Medical Physics and Biomedical Engineering, University College London, London,
United Kingdom

Introduction: Tissue electrical conductivity can be calculated from non-invasive measurements of the
B; transceive phase using MR electrical properties tomography (EPT) [1]. Recent advances have
enabled EPT to characterise tissue conductivity distributions in healthy and diseased brains in vivo [2].
Although the underlying neurophysiological substrates remain unclear, functional EPT (fEPT) has
revealed repeatable task-evoked activations and showed patterns distinct from conventional BOLD
fMRI [3-6]. Influenced by dynamic changes in the concentration and mobility of intra- and extracellular
ions [1, 7-9], fEPT time-series acquired in the resting state may reveal unique neuronal networks in
the brain. Therefore, we present the first resting-state fEPT (rsfEPT), using both seed-based and
independent component analysis (ICA).

Methods: Data acquisition: 70 multi-echo (ME) 2D GRE-EPI [10]
volumes were acquired in three healthy volunteers (HVs) at 3T
(Prisma, Siemens) using a 64-channel head coil with: GRAPPA=4,
MB=3, TR=4034 ms, TEs=15.6, 41.6, 67.6 ms, and 1.3-mm
isotropic resolution. Structural T1l-weighted images were
acquired using MPRAGE. Image processing for each volume:
Magnitude echo images were combined [11] for optimal BOLD
contrast sensitivity. The transceive phase (¢,) was calculated
from the complex ME-EPI data by non-linear fitting [12] and
extrapolation, followed by unwrapping [13] and slice-to-slice
artifact correction [14]. EPT maps were then calculated from ¢,
using integral-form MagSeg [15] using T1-weighted images for
magnitude weighting and GM/WM/CSF segmentation [16], to  Fig 1. (a) Echo-combined magnitude
. L . . . image and (b) reconstructed EPT.

preserve boundaries and minimise noise (Fig. 1). Functional

analysis using seed-based connectivity and ICA: Echo-combined magnitude image volumes were
aligned to the first volume [17], and the same transformation was applied to register the EPTs. For
each subject, seed-based connectivity analysis was performed using CONN toolbox [18], and ICA was
performed using FSL MELODIC [19] on skull-stripped [20] rsfMRI and rsfEPT data. All data were
spatially and temporally filtered with default settings. Comparison of rsfMRI and rsfEPT: rsfMRI and
rsfEPT networks and ROI-to-ROI connectivity derived from the seed-based analysis were compared.
For ICA, the default mode network (DMN) in rsfMRI was identified according to [21], and DICE scores
of spatial overlaps between the DMN and each independent component (IC) in rsfEPT (both defined
as regions with |z|-score > 3) were calculated for each HV. For each IC, the maximum peak height and
its frequency were extracted from the power spectrum, and the number of peaks were calculated as
the number of local maxima in the spectrum. Any difference in these measurements between rsfMRI
and rsfEPT was tested using a two-
sample t-test (p<0.01).

Results and discussion: For
rsfMRI, seed-based connectivity
revealed the DMN in all subjects,
while for rsfEPT the medial
prefrontal cortex seed was mainly
correlated with the frontal brain
grey matter, with  fewer
correlations extending to the
posterior cingul ate cortex and
angular gyrus (Fig. 2). Compared  Fig. 2. Seed-based (a) rsfMRI and (b) rsfEPT connectivity with a seed in
the rsfMRI, the ROI-to-ROI the medial prefrontal cortex (DMN) from a healthy volunteer.
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connectivity matrices showed overall weaker
connectivity in rsfEPT in HVs (Fig. 3).

Using ICA, we identified more ICs in rsfEPT
(39, 42 and 52) than in rsfMRI (21, 12 and 10)
for each subject, respectively. The DMN [18]
was observed in rsfMRI, but ICs in rsfEPT did
not show a spatial distribution comparable to
the DM, illustrated by the low DICE scores
(<0.25) between the rsfMRI DMN and rsfEPT
ICs (Fig. 4a). In all HVs, ICs found in rsfEPT
showed significantly weaker peak powers

(p<0.01), compared with ICs in rsfMRI (Fig.

4b). We found rsfMRI ICs had relatively low

frequencies, while the frequency of rsfEPT ICs showed broader spectra (Fig. 4c).
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Fig. 3. ROI-to-ROI matrices of (a-c) rsfMRI and (d-f) rsfEPT
from all three healthy volunteers (HV1-3).
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Fig. 4. Comparison between rsfMRI and rsfEPT in each healthy volunteer (HV1-3): (a) DICE similarity score
between the rsfMRI default mode network (DMN) and each independent component (IC) found in rsfEPT.
(b-d) Comparison between rsfMRI and rsfEPT ICs in terms of (b) maximum peak height, (d) frequency of the
maximum peak, and (d) total number of peaks found in each IC. **p<0.01, ****p< 0.0001.

Conclusions: We demonstrated rsfEPT for the first time in three healthy subjects using both seed-
based analysis and ICA. Compared with simultaneous rsfMRI, seed-based connectivity and ICA of
rsfEPT showed different connectivity patterns, although with some similarity to the DMN. Future
studies with larger cohorts are needed to further investigate rsfEPT.

References: [1] U Katscher, et al. NMR Biomed. 2017. [2] AL van Lier, et al. Magn Reson Med. 2014. [3] ] Cao,
et al. Phys Eng Sci Med. 2024. [4] M Helle, et al. Proc ISMRM 2019; 3759. [5] R Schmidt. Proc ISMRM 2019;
3777. [6] KJ Jung, et al. Proc ISMRM 2023; 0922. [7] AE Hoetink, et al. IEEE Trans Biomed Eng. 2004. [8] N
Antonov, et al. Clin Hemorheol. Micro. 2008. [9] RL Gaw, et al. IEEE Trans Biomed Eng. 2008. [10] OC
Kiersnowski, et al. Proc ISMRM 2024; 188. [11] B A Poser, et al. Magn Reson Med. 2006. [12] T Liu, et al. Magn
Reson Med. 2012. [13] A Karsa, et al. IEEE Trans Med Imaging. 2018. [14] OV Arsenov, et al. Proc ISMRM 2024,
3675. [15] A Karsa, et al. Proc ISMRM 2021; 3774. [16] J Ashburner, et al. Neuroimage. 2005. [17] S Ourselin, et
al. Image and Vision Comp. 2001. [18] S Whitfield-Gabrieli et al. Brain Connect. 2012. [19] CF Beckmann, et al.
IEEE Trans Med Imaging. 2004. [20] SM Smith. Hum Brain Mapp. 2002. [21] SM Smith, et al. PNAS 2009.



Session 1: MRI & MRS: Brain Physiology

Complex-Valued Magnetic Resonance Fingerprinting for Simultaneous Estimation of
Magnetic Field Perturbations and Transverse Relaxation
Kevin McNally,! Patrick S. Fuchs,! Karin Shmueli,! Matthew T. Cherukara®
Department of Medical Physics and Biomedical Engineering, University College London, London, UK

Introduction: Quantitative susceptibility mapping (QSM) uses the complex MRI signal to calculate
distributions of magnetic susceptibility [1]. QSM reconstruction involves multiple processing steps,
and these stages are susceptible to error propagation. Magnetic resonance fingerprinting (MRF) is a
quantitative technique that enables simultaneous estimation of multiple tissue properties through MR
signal pattern recognition [2]. We applied an MRF technique to complex-valued MRI data (CV-MRF)
to simultaneously estimate transverse relaxation rate (R;) and frequency (proportional to magnetic
field) perturbations (Af) which are the required input for QSM reconstruction. Here, we validated CV-
MREF using a digital phantom, and compared it with recommended methods in vivo.

Methods: The observed complex-valued MR signal from a multi-echo GRE sequence is given by:
S(TE) = M, - e—R;-TE+i(21rAf-TE+¢>0) (1D

where M, is the signal magnitude and ¢, is the phase offset, both at TE = 0. Typically, R is estimated
by fitting the magnitude of this complex signal over TEs, and Af (and ¢,) is estimated from the phase.
For CV-MRF, a dictionary was generated by simulating MR signals (Eq. 1) for all combinations of R; in
the range 10:1:70 s and Af in the range -100:1:100 Hz, for the required TE values. For pattern
matching, the dot product was used to compare the normalised MR signal from each voxel with every
dictionary entry to identify the best match.

For validation, a 128128 synthetic MR image was simulated using a digital phantom [3], with R; and
Af values assigned to regions in the range 10:1:70 s and -50:1:50 Hz respectively, for echo times
between 0 and 50 ms. Gaussian noise was added to the real and imaginary signal components
independently for SNR levels 0:10:100 dB. In vivo data were acquired from a healthy volunteer (male,
aged 32 years) under local ethics committee approval, using a 3T Siemens Prisma. 3D multi-echo GRE
was acquired, at 1 mm isotropic resolution, with 5 echoes (TE; = ATE = 4.92 ms), aligning with
consensus recommendations [4]. A T;-weighted MP-RAGE data set was also acquired for tissue
segmentation, performed using FSL FAST [5]. CV-MRF was compared against consensus recommended
methods: R estimation using auto-regression on linear operators (ARLO) [6], and Af estimation using
non-linear complex field fitting (NLCFF) from the MEDI toolbox [7].

Results: Fig. 1 shows CV-MRF
against ground truth results
in the digital phantom at
SNR = 30 dB. Mean
percentage error (MPE) was
0.05% and 0.01% in R; and
Af respectively. Between 0
and 20 dB, MPE increased
noticeably, reaching 30.4%
and 1.8% for R, and Af
respectively at SNR = 0 dB.

Fig. 2 shows in vivo results of
CV-MRF and recommended
methods. Across the brain,
the MPE between the
methods was 0.01% and 1.87%
in R; and Af respectively. There were no significant differences in estimates of R; and Af in white
matter, but CV-MRF estimated significantly higher R; values than ARLO, and significantly lower Af
than NLCFF, in both CSF and grey matter.
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Fig 1. CV-MRF vs ground truth results in the digital phantom.
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In the in vivo data set, ARLO R2 57
consensus methods ran in
127 seconds (ARLO: 7.4s;
NLCFF: 120s), whereas CV-
MRF took 112 seconds
(dictionary  generation:
0.85s; pattern matching:
111s).
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estimate R; and Af from
complex-valued multi-
echo GRE data. The
performance of the
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and Af. CV-MRF was able
to recover these values with high accuracy, under typical SNR conditions. At higher noise levels, the
accuracy of CV-MRF decreased, in line with results found using other dictionary-based methods [8].

When applying CV-MRF in a healthy volunteer, only minor differences were seen between CV-MRF
results and those from currently used methods. Notably, elevated percentage errors were observed
in a region where Af values approached zero. Differences were more pronounced in CSF and grey
matter but were not significant in white matter. Despite these modest differences, the CV-MRF
method provides robust parameter estimates that correlate closely with estimates from current
widely used methods.

CV-MREF also provided an improvement in run time of 12%, relative to combined ARLO and NLCFF. CV-
MRF computation times for dictionary generation and pattern matching are consistent with other
studies of dictionary-based parameter estimation in other applications [8].

The CV-MRF method is limited by the model in Eq. 1. It represents an idealised case and does not
account for differences in T1 (which may limit accuracy across tissue types) or for the presence of a
phase offset ¢,. Incorporating the latter would offer the possibility of using CV-MRF within phase-
based electrical properties tomography [9]. Validation of CV-MRF in a broader range of synthetic and
in vivo datasets is also necessary.

Conclusions: Here we developed CV-MRF: a dictionary matching approach to determine R; and Af
from complex multi-echo GRE data. CV-MRF parameter maps are closely comparable with those
obtained from current methods, and there is significant potential for expanding the method to other
parameters.
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Introduction: Harnessing intermittent hypoxia (IH) for its potential therapeutic benefits has
gained increasing attention in the past decade, as it has shown to facilitate neural plasticity
[1, 2] and improve both cardiovascular [3] and cognitive function [4]. Although the acute
cerebrovascular and cardiovascular responses to IH have been extensively studied, the
regional effects of IH on the underlying concentrations of excitatory and inhibitory
neurometabolites remains unknown. To further understand the mechanisms of therapeutic
potential of IH, we aimed to assess the brains neurometabolic responses to IH in the
posterior cingulate cortex (PCC) and occipital cortex (OC), brain regions known to have
differential cerebrovascular responses to chronic hypoxia. From literature in chronic hypoxia,
we hypothesised that glutamate would increase in the visual cortex but not the posterior
cingulate cortex. We also hypothesised thar GABA would decrease during hypoxia in the
visual cortex but increase in the posterior cingulate cortex and that lactate would increase in
both regions [5][6][7].

Methods: To do this, we employed a counterbalanced, crossover design, healthy participants
completed two experimental trials separated by at least 6 days. Trials involved 40 minutes of
isocapnic normobaric intermittent hypoxia [4 cycles, 5 minutes of normoxia followed by 5
minutes of hypoxia (target PerO2 = 50mmHg)]. A functional magnetic resonance
spectroscopy (fMRS) experiment utilising an edited MRS sequence (HERCULES) to measure
glutamate, y-amino butyric acid (GABA), and lactate data in 4 minute 32 second blocks was
employed. An MRI-compatible end-tidal targeting system (RespirAct, Thornhill Medical)
allowed for the simultaneous supply of the IH stimulus and collection of breath-by-breath
end-tidal gases.

Statistical Analysis: Neurometabolic concentration estimations were calculated with Osprey
and be presented as ratio quantities referenced to Tissue Corrected Water (TCwater). A
repeated measures three-way analysis of variance was performed to assess differences
between neurometabolites across Brain Area (OC/PCC) vs Condition (Normoxia/Hypoxia) vs
Time (cycle 1,2,3,4).

Results: Data was calculated from 10 participants (5 female, 26.2 * 2.3 years). For glutamate,
there was a main effect of region (F(1,8)=12.255, p=.008) and of condition (F(1,8)=17.849,
p=.003). There was not a main effect of time/block (p>.05). There were no significant main
effects of region, condition, or time for GABA and lactate. No significant interactions were
present for GABA or lactate.

Discussion: The findings of this study provide new insights into the regional neurometabolic
responses to intermittent hypoxia, particularly within the posterior cingulate cortex and
occipital cortex. Contrary to our initial hypothesis, there was no significant difference in how
the two brain regions responded to hypoxic bouts with glutamate decreasing in both regions
during intermittent hypoxia. Our hypoxic exposure was 5 minutes, previous literature that
had reported changes in in neurometabolites were at least 20 minutes [4][5][6]. Notably, the



shortest reported duration to show a measurable change, specifically, an increase in
lactate—was 6 minutes into hypoxia [4]. This difference in exposure time may account for
the absence of GABA or lactate changes in the present study.

Conclusions: We conclude that intermittent hypoxia, delivered in 5-minute bouts, elicits a
distinct neurometabolic response compared with chronic exposures. Specifically, glutamate
levels decreased during hypoxia in both the occipital cortex and posterior cingulate cortex,
with no changes observed in GABA or lactate. These findings suggest an early, transient
reduction of glutamatergic activity, preceding the region-specific adaptations report with
prolonged hypoxic exposure.

Acknowledgements: We would also like to thank Sam Leaney, Irina Giguera and Nia Gwyn-
Williams for their help with data acquisition; and Kevin Williams, and Andrew Fisher for thei
technical help with MRI acquisition and hypoxia protocols.
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Introduction: Functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) offer
complementary advantages. MEG captures neuronal activity with millisecond temporal resolution and directly
measures neural dynamics, but with lower spatial resolution and reduced sensitivity to subcortical sources [1]. fMRI
provides higher spatial resolution and maps subcortical activity, albeit indirectly via the blood-oxygen-level-dependent
(BOLD) signal [2,3]. Combining these modalities could harness their respective strengths, though inherent differences
in signal properties present integration challenges [4,5,2]. This study represents an initial step toward linking these
modalities within a unified framework, extending previous work on multimodal spatial quality transfer [6].

Methods: Sixteen volunteers underwent MEG and fMRI while viewing a 20-minute film [7] sequence encompassing
diverse stimuli. BOLD data were acquired on a 3T scanner (EPI, 3 mm? resolution) and aligned to MNI space. High-
resolution (1 mm?3) anatomical images were collected via a fast-spoiled gradient echo sequence. MEG was recorded
with a 275-channel system, bandpass filtered into delta (; 1-4 Hz), theta (8; 4-8 Hz), alpha (a; 8-13 Hz), beta (B; 13-
30 Hz), and low gamma (low-y; 40-60 Hz). Frequency-specific MEG data were source-localized using synthetic-
aperture magnetometry onto an MNI template at 6 mm3. MEG time-series were de-spiked, high-pass filtered, and
convolved with a canonical haemodynamic response function to match the slower BOLD profile.

Group-level Tensorial Independent Component Analysis (TICA) [8] yielded 25 MEG and 30 fMRI independent
components (ICs) with temporal profiles. We developed a supervised framework to predict low-temporal-resolution
fMRI signals (2 s TR) at 0.5 s resolution from MEG timecourses across all frequency bands. Each model was trained per
fMRI component using temporally aligned MEG components as features. A sliding window (3 TRs; 28 MEG samples)
captured local temporal dynamics around each target fMRI timepoint. Benchmarked models included a multilayer
perceptron (MLP), XGBoost [9], and linear regression. As a baseline, we applied linear interpolation to the
downsampled fMRI data. Models were evaluated on (1) training subset, (2) held-out test subset, and (3) upsampling
of the training subset to 0.5 s resolution. Performance was quantified using the coefficient of determination (R?), and
absolute temporal error profiles were computed.

Results: For fMRI Component 4 (r = 0.65 with early visual
areas [12], Figure 1), the Transformer and MLP achieved
near-perfect fits on the training subset (R? = 0.991 and
0.980), with similar performance in true upsampling. On the
held-out test subset, performance declined sharply
(Transformer = —0.176, MLP = -0.126), falling below the
interpolation baseline (R?> = 0.948). XGBoost and linear
regression produced negative R? values across contexts,
while interpolation remained consistently high (=0.95-
0.97). Importantly, despite training on only 25% of modelled timepoints present in upsampled series, the Transformer
and MLP outperformed interpolation when predicting ground-truth fMRI points from the same subset, showing that
the learned mappings captured cross-modal relationships beyond simple smoothing. Upsampling results for all models
as compared to the linear interpolation can be seen in Figure 2.

Fig. 1. Visualisation of the modelled fMRI component
4, strongly correlated with early visual networks

Discussion: The strong training and upsampling performance of the Transformer and MLP models demonstrates that
MEG-derived features contain sufficient information to reconstruct fMRI temporal dynamics at higher sampling rates
when evaluated in-sample. Notably, even with reduced training data, both models outperformed interpolation for
predicting held-out fMRI points from the same subset, indicating that the learned mappings reflect meaningful aspects
of the underlying electro-haemodynamic relationship. This suggests that the temporal structure of MEG activity can
be mapped onto slower BOLD dynamics, offering a new means to investigate neurovascular coupling. Beyond
physiological insight, these capabilities could be integrated with previous spatial MEG upsampling work [6] to produce
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fused multimodal representations combining MEG’s temporal resolution with fMRI’s spatial resolution.
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Conclusions: Cross-modal temporal upsampling using MEG and fMRI can outperform interpolation and reveal rich,
mappable correspondences between electrophysiological and haemodynamic signals. While improving
generalisability remains a challenge, these findings support the feasibility of multimodal fusion pipelines that leverage
the complementary strengths of these imaging modalities.
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Introduction: Functional MRI of infants often suffers from motion and physiological noise, leading to
frames that degrade data quality and reduce sensitivity for the detection of brain activity. Traditional
pipelines remove frames using fixed thresholds on metrics like framewise displacement (FD) and data
variance statistic (DVARS). However, these thresholds can miss subtle abnormalities in the data or
conversely remove volumes that are not too noisy. This study explored whether a deep learning (DL)
model can better identify low-quality frames and improve the temporal signal-to-noise ratio (tSNR).

Methods: Awake fMRI comprising 310 runs from 165 infants was acquired using multiband EPI (510
volumes/run 64*64*36voxels; (3mm)3; TE=32ms; FA=40; multiband slice acceleration=4) during a picture-
viewing task from foundation of cognition (FOUNDCOG) project. The dataset was split at the subject level
to ensure generalisation to new subjects across training, validation, and test sets. Ground-truth frame
quality labels were derived using two approaches: FD/DVARS thresholding (FD < 1.69 mm, DVARS < 28.8)
and a machine learning model trained on 19 framewise features including motion, signal, and intensity
metrics, all calibrated to optimize tSNR[1]. A deep spatiotemporal neural network was trained to classify
poor-quality frames using eight-frame input windows with four derived channels per volume. Features
were extracted via 3D convolutional layers followed by a gated recurrent unit (GRU) to capture temporal
changes, and final frame scores were produced using sigmoid-activated linear layer [2][3]. Frame
retention thresholds were applied to ensure that 70-90% of frames were retained per run, balancing
denoising with temporal continuity [4].

Results: On validation runs, the model achieved an AUC of approximately 0.74. Across methods, AtSNR
was computed as the change in mean tSNR within the brain mask after removing frames marked as low
quality. The DL-based approach produced the highest mean AtSNR across the cohort, outperforming both
FD/DVARS and the ML-based frame quality classifier. However, FD/DVARS generated the most runs
(131/310) with improved tSNR, followed closely by DL (129), and ML (50). Further analysis of frames
marked “good” by FD/DVARS but “bad” by the DL model showed that removing them improved tSNR in
154 runs. These additional frames have other abnormal features beyond FD and DVARS, suggesting that
the DL model captures more subtle spatiotemporal anomalies.

Discussion: The deep learning model captured quality issues beyond motion-related artifacts measured
by FD/DVARS, though FD/DVARS still improved tSNR in slightly more runs overall. These results suggest



that deep learning and traditional metrics identify overlapping yet distinct sources of noise. However,
relying on tSNR as a benchmark has limitations, since it cannot capture task-specific deviations in neural
signals [5].

Conclusions: Deep spatiotemporal neural networks can be a scalable and effective approach for
automated frame-level quality control in infant fMRI. While FD/DVARS thresholds remain effective in
many cases, the DL approach showed distinct advantages in improving tSNR in numerous runs. tSNR is a
useful preliminary metric for assessing denoising, as it reflects improved temporal stability. However, it
may increase by reducing the data retention rate and removing the task-related signals. Future work will
explore using GLM performance and inter-subject correlation for defining ground truth and evaluating
model impact.

Acknowledgement: We acknowledge the FOUNDCOG team for the dataset used in this study.
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Introduction: Quantification of arterial spin labelling (ASL) MRI remains challenging due to low signal
to noise ratio (SNR). There are multiple methods proposed to quantify ASL signal including least-
squares and Bayesian-inference based methods. Additionally multi-delay ASL (MD-ASL) has increased
prevalence in recent years [1] however information on the repeatability compared to single-delay (SD-
ASL) is limited. The goal of this study was to determine the repeatability of SD-ASL and MD-ASL using
both Bayesian-inference and least-squares fitting pipelines.

Methods: 9 healthy volunteers (age 23-53, 7F/2M) were recruited and scanned 14 days apart on a 3T
Philips Elition X scanner. Both single and multi-delay 3D GraSE ASL sequences were acquired for all
participants with MD-ASL using the Spin Labeling ASL Research patch. SD-ASL acquisition: TE/TR (same
for MO and label/control)=12ms/4280ms, 30 slices, acquired voxel size=3.75x4.00x5mm?, label
duration=1800ms, post label delay(PLD)=2000ms, 6 repeats per PLD, scan duration=7mins 16secs.
MD-ASL acquisition: MO TE/TR= 20ms/6000ms, label/control TE/TR=20ms/2675ms, 30 slices, acquired
voxel size=2.5x2.5x5.0mm?, label duration=2000ms, PLDs=500, 1000, 1500, 2000, 2500, 3000ms, 2
repeats per PLD, scan duration = 8mins 20secs. The ASL acquisitions were positioned with the
acquisition field of view at the bottom of the cerebellum with the labelling plane 30mm below to
ensure consistent labelling between sessions.

The SD-ASL and MD-ASL acquisitions were quantified with both least-squares and Bayesian-inference
methods to determine the whole brain, grey matter (GM) and white matter (WM) , and relative
GM/WM CBF and ATT. Least-squares analysis used in-house Python scripts and Bayesian-inference
analysis used the BASIL FSL toolbox [2]. Both analysis techniques used GM MO calibration, SD-ASL was
analysed as described SD-ASL MD-ASL MD-ASL SD-ASL MD-ASL MD-ASL
in the SD-ASL [A] CBF CBF ATT ATT
consensus paper*. MD-
ASL BASIL analysis
used a bolus arrival
time prior of 1.3secs
with a standard
deviation of 3secs to
ensure  repeatability
was not driven by the
width or confidence of
the prior [3]. A T1-
weighted image was
used to segment GM
and WM regions using
FSL FAST®. The within-
subject Coefficients of
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Results and Discussion: Visually,
both Bayesian-inference and
least-squares fitting showed
similar variability between
sessions (Figure 1), however least-
squares had more erroneous
fitting voxels particularly in white
matter (Figure 1[B]). Mean values
for least-squares and Bayesian-
inference fitting of the SD-ASL and
MD-ASL acquisitions are

reported in Table 1. Figure 2
summarises the repeatability
when quantified using the
Bayesian-inference based BASIL
toolbox and Figure 3 for least-
squares. For both BASIL and
least-squares, ATT was more
repeatable than CBF (4-7% CoVs
for ATT and 11-23% for CBF in
WB, GM, and WM). However,
relative CBF repeatability was 3-
4 times better than absolute

CBF, with CoVs similar to ATT
which is likely to indicate relative
CBF and ATT are less dependent
on global factors such as
labelling efficiency that may vary
between scans. The
repeatability of least-squares and
Bayesian-inference was
comparable with 1-4% difference
in CoVs (see Table 1). MD-ASL
CBF was slightly more repeatable
than SD-ASL with 4-6% lower
CoVs using Bayesian-inference
fitting or 8-12% lower when
quantified with least-squares,
however this may be due to the
increased scan time.

Conclusion: This study suggests

that for longitudinal perfusion
studies, relative CBF measures

may be more useful given the

Bayesian- Least- Bayesian- Least- Bayesian- Least-
inference Squares inference Squares inference Squares

Whole 23.2 23.4 32.1 39.3 1.58 1.50
Brain (19%) (21%) (15%) (11%) (5.8%) (6.9%)
Grey 28.6 29.1 37.7 46.8 1.51 1.50

Matter (19%) (20%) (15%) (12%) (6.5%) (7.3%)

13.6 13.0 22.8 28.5 1.72 1.52
(21%) (23%) (15%) (11%) (4.5%) (5.7%)

Relative 2.12[a.u.] 2.25[a.u.] 1.65[a.u.] 1.64[a.u.] 0.87[a.u.] 0.98[a.u.]
GM/WM (5.9%) (5.9%) (3.7%) (7.8%) (3.1%) (2.9%)

Table 1: Summary of mean perfusion estimates and CoVs
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Figure 2: Bayesian-inference parameter estimation and CoVs for
SD-ASL and MD-ASL CBF and ATT. Top row shows values in the
whole brain, and bottom row shows relative GM/WM values.
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Figure 3: Least-squares parameter estimation and CoVs for SD-
ASL and MD-ASL CBF and ATT. Top row shows values in the

higher repeatability. BASIL and least- whole brain, and bottom row shows relative GM/WM values.

squares quantification methods had comparable repeatability. MD-ASL was more repeatable than SD-
ASL in all measures and provides additional ATT information with high repeatability.

References: [1] Woods JG, et al. Magn Reson Med. 2024;92(2):469-95. [2] Chappell MA, Groves AR, Whitcher
B, Woolrich MW. IEEE Trans Signal Process. 2009 Jan 1;57(1):223-36. [3] Fothergill A, et al. Impact of Bayesian-
Inference vs Least-Squares Fitting on Multi-Delay Arterial Spin Labelling Parameter Estimation. In: Proc Intl Soc
Mag Reson Med 32 (2024:2016). Singapore; 2024. [4] Bland JM, Altman DG. BMJ. 1996;313(7059):744-744.
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Introduction: Four-dimensional Flow Magnetic Resonance Imaging (4D Flow MRI) offers unparalleled
insight into cardiovascular hemodynamics. However, in the context of bicuspid aortic valve (BAV)
disease, its diagnostic power is often compromised by technical artifacts, including low spatial
resolution and significant noise. Such data degradation undermines the reliable measurement of key
hemodynamic markers implicated in the progression of BAV-related aortopathy, limiting the clinical
utility of 4D Flow MRI for early risk stratification. In this study, we sought to overcome these limitations
by developing and validating two deep learning models based on the 4DFlowNet architecture [1]: a
post-processing (PP) model for data refinement and a super-resolution (SR) model that also increases
spatial resolution. The central hypothesis was that the SR model would provide superior correction of
velocity fields and improve the estimation of hemodynamic metrics—including peak velocity, wall
shear stress, and flow displacement—than the PP model.

Methods: Two deep learning models based on the 4DFlowNet architecture [1] were trained on 4D
Flow MRI data from 70 patients with BAV disease. Both models performed PP, including denoising and
artifact correction, while the second model additionally applied a two-fold spatial SR enhancement.
Training was performed using over 36,000 image patches, employing a combined loss function that
incorporated perceptual loss, eddy current correction, and mean squared error. For SR training, inputs
were synthetically degraded through k-space downsampling and noise injection. Both models showed
consistent improvements over baseline in Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index Measure (SSIM), Root Mean Square Error (RMSE), and Bland-Altman metrics. The models were
internally validated on 20 cases from the University of Calgary and externally tested on five
independent BAV cases from the University of Leicester, where hemodynamic parameters including
peak systolic velocity, wall shear stress (WSS), normalized flow displacement (NFD), and vortex
shedding, were extracted for evaluation.

Aortic Segmentation and Plane Extraction:

The entire aorta was manually segmented in each dataset. For our analysis, we focused on a specific
region of interest (ROI) within the ascending aorta. This ROl was defined as the section extending from
the aortic valve to the last cross-sectional slice just proximal to the aortic arch where the ascending
and descending lumens appeared distinct. Within this ROI, an aortic centerline was automatically
generated, and 25 equidistant planes perpendicular to this centerline were extracted for
hemodynamic analysis.

Peak Velocity Calculation: Global peak velocity was identified by locating the maximum velocity
magnitude across the 4D volume for each time frame, with the highest value defining peak systole.
Within the ROI, voxel-level peak velocity was extracted using a Maximum Intensity Projection (MIP),
and the peak voxel’s velocity was tracked across all phases [3]. To reduce noise and improve
robustness, a spatially averaged peak velocity was then computed using a 3x3x3 kernel.

WSS: WSS was computed from the spatial gradients of the velocity field at the vessel wall. This
calculation assumed blood is a Newtonian fluid with a dynamic viscosity (1) of 3.5 mPa-s. We
subsequently calculated the mean and maximum WSS, axial WSS, and WSS angle for each plane.

NFD: NFD was calculated to quantify flow eccentricity. It was defined as the displacement of the
velocity-weighted flow centroid from the geometric center of the vessel, normalized by the local aortic
diameter [2].



Results: Across five BAV cases, the SR model outperformed the PP model in capturing key
hemodynamic features. As shown in Figure 1, SR yielded up to 98% higher global peak velocities, 2—
10x higher WSS, and up to 83% higher NFD, indicating greater sensitivity to high-velocity jets, eccentric
flow, and diastolic shifts. It also preserved late-phase vortex shedding and exhibited broader spatial
NFD distributions (Figure 2) that were suppressed in PP due to temporal smoothing. Visual assessment
confirmed SR’s clearer flow patterns and sharper vessel boundaries (Figure 3), supporting its potential
for early risk stratification in BAV aortopathy.
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Fig. 1. Quantitative Comparison of Hemodynamic Metrics from Super-Resolution (SR) and Post-Processed (PP)
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eccentric flow patterns compared to the Post-Processed (PP) model.

Discussion: The SR model outperformed standard post-processing by capturing sharper velocity
peaks, higher WSS, and more eccentric flow. It preserved late-phase vortex shedding and revealed
broader NFD patterns, highlighting its ability to detect subtle flow abnormalities in BAV.

Conclusions: SR enhances 4D Flow MRI by improving sensitivity to key hemodynamic markers in BAV.
It shows promise as a non-invasive tool for early diagnosis and risk assessment. In the future, SR could
enable more precise monitoring of disease progression and help guide treatment decisions in BAV-
related aortopathy.
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Introduction: The UK Biobank has recently completed multimodal MRI scans of 100,000 participants
using the same acquisition protocol on identical scanners and extracting image derived phenotypes
(IDPs) with a standardised pipeline [1,2]. However, confound effects are still present and need to be
carefully addressed. In previous work [3], it has been shown that when T2-FLAIR is not used as an
additional input for FreeSurfer (FS) processing [4,5], IDPs are affected. This batch variable, hereon
referred to as FST2, only affects ~2% of participants in UKB, but accounts for up to 14% of variance
explained in some IDPs. In this work we investigate the prevalence and magnitude of the FST2 batch
variable across IDPs and assessed strategies for mitigating it. We used established harmonization
methods and compared their ability to remove this batch effect through analysis of the mean and
variance differences. We then compared the impact of different strategies on the correlations between
affected IDPs and non-imaging variables (nIDPs).

Methods: We used Cohen’s d and the ratio of variance between the groups with and without the T2
FLAIR across 1432 structural IDPs. We created age nomograms for IDPs with known age changes to show
how missing T2-FLAIR can bias models and downstream analysis. We then compared standard confound
correction of age, sex, head position and head size scaling and four harmonization methods for
mitigating the FST2 batch effect along with these confounding variables. 1) multiple linear regression of
just confounds; 2) multiple linear regression of confounds and binary FST2 vector indicating batch; 3). A
modified form of ComBat [6,7] which skips the step at which the least squares estimate for covariate
effects are added back in, effectively regressing them out, 4) Method 3 but omitting the scaling
correction on the variance; 5) ComBat pooling only across similar IDP classes (e.g. cortical thickness or
surface areas) and not all FS IDPs together. We validated these approaches against each other using
Cohens d between the groups with and without T2-FLAIR to show the mean effect and the ratio of
within group variances to show the variance differences. Finally, we compared potential downstream
impact of each of our methods through measuring the correlations between FS IDPs and over 18,000
nIDPs, showing the results as Bland Altmann plots.

Results: We found a strong negative effect size between the group with and without the T2-FLAIR in
over 250 FS IDPs, particularly those related to cortical volume and thickness. In the most affected IDPs,
the ratio of variance between the two groups was as high as 2.8 (fig 1A). All harmonization methods
reduced Cohen’s d effect size (mean shift bias) below 0.1 for all IDPs, however, linear regression was
unable to correct variance differences between batches, whereas ComBat methods 3 and 5 were able to
(fig 1B). When looking at correlations with nIDPs, there were minor differences between methods 2-5,
but larger differences compared to method 1 when looking at weaker correlations, suggesting the FST2
effect may be causing spurious but weak correlations.
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Figure 1: Cohens d (top) and variance ratio (bottom) between group with (FST2==1) and without (FST2==0) T2-
FLAIR before applying harmonization (A) and after applying ComBat harmonization using method 4 (B).

e P rra N
. & s By
0

Unharmonized Data For:
aparc-DKTatlas_rh_thickness_superiorfrontal

Combat handiing of confounds and batch:
‘aparc-DKTatlas_rh_thickness_superiorfrontal

Figure 2: Panel A: Bland Altmann plots showing the Fischer transformed Z-statistics of the correlations between
the FS IDPs and nIDPs using different methods of harmonization and confound removal. Here methods 1-5 are
matched to those described in the methods section. Panel B: Age Nomogram showing the batch effect (blue dots
FST2==1, used to derive the percentiles; red dots FST2==0) on a cortical thickness IDP with a known age effect
before harmonisation (top) and after applying method 3 (bottom nomogram) with age preserved by ComBat.

Discussion: The FST2 confound causes a strong bias in the mean and variance in over 250 IDPs. We have
shown ComBat’s advantage over simple regression in its ability to correct for variance differences
between batches. Comparing correlations with nIDPs, we have shown that using ComBat to handle both
confound and batch correction is comparable to simple regression but offers no significant advantage.

Conclusions: Addressing the FST2 batch effect using regression sufficiently corrects the mean shift bias,
but not the inter-batch variance differences. Researchers using their own FS derived IDPs or using UKB FS
IDPs should be aware of these effects and consider using this modified ComBat approach to handle both
the FST2 effect and other confound correction.
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Introduction: Functional MRI (fMRI) is highly sensitive to head movement, which corrupts the images.
This is particularly challenging in populations such as awake infants [1]. Several strategies have been
developed to address motion-corrupted fMRI images, including volume censoring, subject-level
exclusion, and motion estimation and correction tools such as SPM and FSL [2]. However, up to 50%
of experimental runs may still be excluded due to motion in awake infant fMRI studies. Recently, deep
neural networks (DNNs) have been increasingly applied to medical imaging, demonstrating promising
performance in MRI registration. Therefore, we hypothesize that DNNs hold considerable potential
for motion correction in fMRI data because of their ability to capture rich prior information and correct
nonlinear artifacts. In this study, we introduce an RWKV-based 4D fMRI motion estimation model
(RWKV-MoEst), where the RWKV-6 model, commonly used in natural language processing, is adapted
to solve fMRI tasks [3]. We aim to demonstrate that DNNs can effectively estimate head motion in
fMRI by predicting six motion parameters, i.e., three translations and three rotations, and highlight
the potential of deep learning technology for accurate motion estimation.

Methods: The architecture

of our model is depicted in | Mtion Pacimeters Diffecsnce. 150 |
Figure 1. The RWKV-MoEst T
architecture consists of four M{P | e
stages, where the input is e — ] —]
two successive fMRI volumes 3
and the objective is to i s
predict the  difference
between their
corresponding positions (i.e.,
time t minus t-1). Each
stage was  constructed
through the implementation
of patch merging, with patch
embedding employed in the
case of Stage 1. The multiple
4DfMRI-Global-RWKV were
applied repeatedly within W ,
the stages, and in each layer, e
tokens are fed into the
VRWKV-SpatialMix-V6 module, which served as a global attention mechanism. Specifically, the
VRWKV-SpatialMix-V6 module drew inspiration from the Eagle time-mixing module in the RWKV-6
network, maintaining a balance between performance and computational cost when handling high-
dimensional datasets, such as fMRI, due to its attention-free mechanism. The temporal difference
between feature maps was calculated after four encoder stages, followed by an MLP to predict the
differences in motion parameters.
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Fig. 1. The overview architecture of the RWKV-MoEst model

We evaluated this model on a longitudinal neuroimaging dataset from awake infants scanned a 2-
months-old (n = 130) and again at 9 months old (n = 65), resulting in a total of 903 fMRI acquisitions
using multiband EPI (acceleration factor 4) [4]. We then split the dataset into training, validation, and
test setsin an 8:1:1 ratio at the subject level.

Results: A frame-wise displacement loss was used for training. To reduce learning of subject-specific
brain anatomy, we randomly cropped to 32*32 in the x-y plane, hypothesizing this would improve
generalisation to new subjects. However, given the rich temporal structure of the slices in the z-
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direction, due to the interleaved slice order and multiband acquisition, we hypothesized that random
crops in this dimension would negatively impact motion estimation. To evaluate these hypotheses we
therefore compared three cropping regimes. Table 1 presents the numerical results, including the
Mean Absolute Error (MAE), the adjusted MAE after denormalizing to the original scale, and the
Pearson Correlation Coefficient (PCC) for each motion parameter. Moreover, the respective scatter
plots of each of the six motion parameters are shown in Figure 2.

Tab. 1. Quantitative results on test dataset

Method Loss PCC- | PCC- | PCC- | PCC- | PCC- | PCC- | MAE | Adjust
Tx Ty Tz Pitch Yaw Roll _MAE
RWKV-MoEst (crop x,y&z) 0.68 0.90 | 0.65 0.64 | 0.43 0.84 0.90 0.27 | 0.033
RWKV-MoEst (crop x&y) 0.63 | 0.89 0.74 | 068 | 0.34 | 0.90 | 0.92 | 0.25 | 0.028
RWKV-MoEst (no crop) 0.67 0.88 0.65 0.64 0.51 | 0.87 0.88 0.27 | 0.032
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Fig. 2. Scatter plots of each of the six motion parameters
Discussion: The RWKV-MoEst model with random cropping on x and y outperformed other regimes,
this suggests that restriction augmentation along the z-axis helps the model avoid cropping out
supporting the hypotheses that preserving the z dimension is important but removing subject-specific
anatomy aids generalisation. It is also noticeable from Figure 2 that the pitch rotation is most
challenging to predict for the awake infant fMRI data, likely due to their frequent and irregular nodding
movement.

Conclusions: This study presents RWKV-MoEst, an RWKV-based model designed for 4D fMRI Motion
Estimation, highlighting the feasibility of using DNNs to predict motion parameters from raw fMRI.
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Aims

Glioblastoma (GBM) is the most common and aggressive CNS tumour in adults. Treatment involves
maximum resection followed by radiotherapy and Temozolomide chemotherapy. However, recurrence
almost always occurs, and median survival is 12-18 months. Additionally, repeat biopsies of brain
tumours are challenging, and there is a need for sensitive non-invasive tools to monitor disease
progression and treatment efficacy. Standard MRI imaging is a non-invasive, non-ionising tool but lacks
the resolution to detect microstructural changes characteristic of early stage GBM recurrence.
Diffusion MRI (dMRI) is sensitive to water movement in tissues at a much higher resolution than
standard MRI imaging. By using a range of b values the signal can be sensitised to different
compartments in the tissue, then model assumptions can be applied to link these to changes in
microstructurel. By modelling changes in the microstructure using high quality diffusion data at
multiple timepoints, it could be possible to define biomarkers of treatment response and progression.
Here we present two rich dMRI datasets at baseline and aim to collect 40 datasets at three timepoints
using a state-of-the-art ultra-strong gradient dMRI scanner? to assess treatment response and disease
progression.

Method

dMRI datasets of suspected glioblastoma
patients were acquired with a 3T Siemens
Connectom scanner equipped with an
ultra-strong gradient system (300 mT/m),

L L ———— " using a pulsed-gradient spin-echo echo-
_ - : B - : . planar imaging (PGSE-EPI) sequence with
—/—’—‘— voxel resolution 2 mm? isotropic and full
z e = brain coverage; SENSE=2; b-values: [100,
' . | 200 500, 1200, 2400, 4000, 6000,
; _/_’_I_\—’_r_l_\_'_'_’_\— 8000]s/mm?3) in three orthogonal
' @ - - “ directions;  TE=[40-125] ms and
s et ——— " |- TR=[3000-5000] ms. For each b-value and
=20 | TE/TR combination, three diffusion
encoding schemes were employed:
A=[18-90] ms, 6=7 ms; A=[25-90] ms,
6=12 ms; and A=[31-90] ms, 6=20 ms
(Fig.1).
Processing included denoising, Gibbs ringing, eddy current, motion and gradient non-uniformity
corrections. Whole-brain parametric maps of overall T1 relaxation time, compartmental T2 relaxation
times (intracellular T2, extracellular T2, intra-neurite T2;,) and diffusion properties (extracellular,
cellular and neurite signal fractions f., fic and fi.=1-f--fi, cell radius R and intra-neurite diffusivity Di)
were obtained by fitting a modified Relaxation-VERDICT model® to the data at b values > 100 s/mm?:

Figure 1 Acquisition parameters of the MIMOSA study and how
the parameters change in relation to each other over the duration
of the scan. Total acquisition time = 1h:10m.

TR _TE _TE _TE
S(b' Ar 6! TE' TR) = 50(1 —e ) (fee Tzesball(b' De) + fice Tzicssph (b' A' §r R) + fine TzinSstk (b' Din))



Results

We show unigue dMRI
measurements with ultra-high
diffusion weighting and multiple
(b,TE,TR,A,5) combinations
enabling unprecedented
characterisation of the GBM
microenvironment. Excellent data
quality (SNR>35) has enabled the
estimation of whole-brain

4 B

— o - S N
Figure 2 measurement values with the tumour boundary for Subject 1
diagnosed with Meningioma, for T1, T2 extracellular component, T2 cell, parametric maps, showing higher
T2 neurite, f neurite, f cell, f extra, D extracellular, and R cell. Region of low cell radii, cellular fraction (f cells
cellularity in the central tumour region corresponding to an area of and R cell) around two edges of
necrosis in f cells and R cell.

T, extracellular [0-600] ms T, cell [0-90) ms T, neurite [0-110] ms

v v >

v d
f neurite [0-70] % L 0-50] ¥

patient 1 (Fig.2) with a central
area of lower cellularity which
_ corresponded to findings of a
9 .'. 3 : necrotic core upon resection, and

s & A
'\' , ;’ ‘j more uniform T2 measurements
corresponding  to a more
) D extracellular [0-3] ymPms R

f extra [0-100] ell [4-13) ym

homogeneous tumour. For subject
2 (Fig.3) the T2 measurements
were highly diffuse while diffusion
compartments defined shaped

boundaries with higher cell radii
Figure 3 Tumour parametric map of T1, T2 extracellular, T2 cell, T2 neurite, towards the lateral side of the
neurite fraction, cellular fraction, extracellular fraction, extracellular tumour.

diffusivity, and cell radius in a grade 4 glioblastoma patient.
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A
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Discussion

Analysis of data produced high quality subject-specific tumour parametric maps. Participant 1 was
diagnosed histologically with a grade 2 atypical meningioma. F cells, and f extra parameter maps (Fig.2)
exhibited a low overall cellularity in a section running through the anterior-posterior direction
corresponding to histologically confirmed central necrosis. Overall cellularity (R cell, f cell) and
diffusion parameters (D extra) were more uniform as expected from a lower grade tumour.

The parametric maps of glioblastoma patient 2 (Fig.3) were far more diffuse on T2 measures,
characteristic of glioblastoma heterogeneity and had areas of high R-cell and f-cell at the edges likely
indicating areas of high proliferation. Extracellular diffusion and cell radii were higher and more varied
in this subject again fitting with the higher histological grade.

Conclusion

The ultra-strong gradient scanner (b-value up to 8000 s/mm?) and novel dMRI acquisition (varying TE,
TR, A, and &) shows promise for monitoring the GBM microenvironment. We showed high resolution
maps of diffusion and relaxation properties (e.g., T2 in extra, intra and cellular compartments, and cell
radius) which identify tumour grade specific characteristics and could potentially further assist in
diagnosis and boundary identification for surgical intervention. We aim to predict treatment response
with follow-up scans at three and six months.

References: 'Alexander D.C. et al. NMR Biomed. 2017 2Jones D.K. et al. Neuroimage 2018; 3Palombo
M. et al. Nature Sci. Rep. 2023
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1H MR spectroscopy and IVIM-DWI to evaluate the effects of lonidamine and
temozolomide treatment in a mouse model of glioblastoma
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Introduction: Enhanced glycolysis is a distinctive hallmark of cancer (Warburg effect) [1]. Lonidamine
(LND) is an inhibitor of aerobic glycolysis and mitochondrial respiration, but only has a modest
antineoplastic impact when used as a single agent [2]. However, when combined with temozolomide
(TMZ), it results in a dramatic effect in melanomas [3]. TMZ is the standard of care for GBM and has
led to an increased median overall survival in about 50% of patients [4]. Lonidamine induces
intracellular acidification and reduction in ATP production by inhibiting various metabolic pathways,
thereby sensitising tumour cells to conventional therapies like TMZ [3,5,6]. TMZ is subject to an
energy-dependent multi-drug resistance that pumps the cytotoxic effect out of the tumour cell, which
is potentially diminished by LND-mediated tumour denergization [3,5], so it is rational to combine TMZ
with LND to enhance the therapeutic outcome. As LND causes intracellular acidification through the
inhibition of lactate export, it was expected that LND would increase the TMZ stability within tumors;
however, this has enhanced both short-term and long-term tumour response to TMZ, as shown in
studies on melanoma xenografts [7]. The combination of LND+TMZ has been reported in human
melanoma xenografts assessed by 3P MRS and 'H lactate [7] however, it hasn’t been reported in
GBMis. The current study was thus performed to evaluate the synergistic effect of LND and TMZ using
longitudinal MRS.

Methods: C57BL6 mice were injected intracranially with 2.5x10° GL261 GBM cells in the right cortex.
When tumours exceeded 2 mm on T2-weighted MRI, animals received daily treatment for five days:
saline (control, i.p.), LND (100 mg/kg, i.p.), TMZ (50 mg/kg, oral gavage), or LND+TMZ (both as above).
MRI was performed on days 0, 3, and 6. Single-voxel (2x2x2 mm?3) PRESS spectra (TR = 2000 ms, TE1 =
9.13 ms, TE2 = 7.37 ms, 200 averages, 2048 points, 4401 Hz) were acquired from the tumour, and
metabolite ratios (tCho/NAA, Lip+Lac/tCr) quantified using QUEST in jMRUI. Lactate was assessed with
ISIS-SelMQC (TR = 2000 ms, 32 averages, 2048 points, 8012 Hz) using the same voxel placement of
PRESS. IVIM-DWI (13 b-values, spin-echo EPI) was analysed with in-house software to derive D, D*,
and f.

Results: Representative A1H ISIS-SelMQC spectra for LND (red), TMZ (blue), LND+TMZ (green), and
saline control (black) groups are shown in Fig. 1B—E at days 0, 3, and 6. At baseline, lactate resonance
was detectable in all groups. Post-treatment, lactate became undetectable in LND and LND+TMZ
groups, indicating marked suppression of glycolytic activity; TMZ produced a gradual decline, while
saline controls maintained detectable lactate throughout, consistent with sustained glycolytic
metabolism in untreated tumours. Quantitative analysis of the % change (relative to baseline) in
lactate signal intensity at day 3 and day 6 in all the groups (Fig. 1F).

No significant difference in tumour volume was observed between any group. The tCho/NAA ratio
decreased steadily in TMZ and LND+TMZ animals but increased in controls, yielding significant
differences at day 6 (p=0.04 and p=0.01, respectively; Fig. 2A). Both treated groups also showed a non-
significant declining trend in Lip+Lac/tCr (Fig. 2B) relative to saline. True-diffusion coefficient (D) values
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did not differ significantly between groups (Fig. 2C). A representative PRESS spectrum from the tumour
(Fig. 2D) shows characteristic resonances including Lip+Lac, NAA, Glx, tCr, tCho, and ml.
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Fig. 1. A_F.*H ISIS-SelMQC spectra (B-E), voxel overlaid on T2 weighted image (A), comparing the treatment
response on day 0, day 3, and day 6 in LND group (C, red spectra), TMZ (D, blue spectra) and LND+TMZ group
(E, green spectra) compared to saline control group (B, black spectra). Fig. 1F shows quantitative analysis of %
changes (relative to baseline) in Lactate/Water ratios between all treated groups and the control saline one.

that the difference between groups reached a significance level of < 0.05.

Discussion: We observed a significant metabolic change in tumours treated with LND, TMZ and
LND+TMZ despite no differences in the tumour growth or survival between treated and control
animals. The disappearance of the lactate signal indicates inhibition of lactic acid production and may
subsequent depletion of ATP, resulting in reduced tumour cell proliferation due to the combined
effects of LND and TMZ [ 7]. A significant reduction in the tCho/NAA ratio may reflect decreased
cellular proliferation, given choline's role as a marker of membrane turnover, and the effect of
temozolomide (TMZ) in halting DNA replication, thereby limiting tumour cell growth [3]. The notable
reduction of Lip+Lac/tCr is probably due to a decrease in tumour lactate as evidenced by the H ISIS-
SeIMQC. However, as the tumours kept growing at a similar rate to controls, and IVIM-DWI
parameters, particularly D, did not show any significant changes among cohorts. Further studies are
needed in a larger cohort as well as longer study points to evaluate whether these metabolic changes
are only acute in nature or whether the therapeutic effect (reduction in volume) of the combined
treatment with LND+TMZ happens much later, which would further indicate that metabolic changes
are earlier marker of treatment response.

Conclusion: Tumour selectivity and low toxicity to normal tissues are critical characteristics that make
LND an attractive agent for the treatment of cancer by potentiating the activity of other agents such
as TMZ. MRS has been shown to detect metabolic-induced changes, offering the potential for
monitoring early post-treatment Changes.
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amplitude ratios (tCho/NAA, Lip+Lac/tCr) between saline and LND+TMZ groups. Box plots illustrating the
percent change in the IVIM-DWI parameter, D, with time relative to day O for all groups. A representative 1H
MR spectra showing Lip + Lac, NAA, Glx, tCr, tCho and ml peaks from the tumour region (D). Asterisks indicate
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Introduction: Diffusion-weighted MR spectroscopy (dMRS) probes brain microstructure by examining
cell-specific metabolite diffusion, such as N-acetylaspartate (NAA), predominantly found in neurons.
Recent works investigated the sensitivity of Single Diffusion Encoding (SDE) [1-3] and Double Diffusion
Encoding (DDE) [4-6] to fine cellular structures, such as dendritic spines. Here, we consider two
acquisition sequences: SDE with high b-values and DDE in the long mixing time regime, where
sensitivity to soma size, branching and dendritic length is minimal [4]. Our goal is to evaluate the
robustness of spine density estimates in realistic scenarios using those two acquisitions, and how
combining them can help reducing the estimates bias, uncertainty and degeneracies. Using a gray
matter (GM) model of spiny dendrites and somas, we simulate SDE/DDE signals, estimate spine
density posterior distributions, and compare with in-vivo dMRS mouse data.
Methods: Acquisition sequences (matched for simulations and in-vivo data):
- SDE: b-values=[0.02,0.5,1.5,3,6,10,15,20] ms/um2, 16 diffusion encoding directions uniformly
distributed per b-shell, diffusion time A=54.2 ms, gradient duration 6=3.1 ms, TE=58.4 ms.
- DDE: A=30 ms, 6=4.5 ms, mixing time=29.5 ms, b-values=[1, 7.5] ms/um? per diffusion block, TE=144
ms, 32 gradient directions isotropically distributed on a half-sphere for the first block and second
block’s orientation w.r.t. the first block 8 varying from 0° to 180° in 45° steps. Reported signals are
averaged across the 32 directions.
Numerical Simulations (Fig.1):

- Model 1: Isotropically distributed spiny dendrites were modeled with the Trees-Toolbox [7] for
skeleton building and meshed in Blender. We simulated the SDE/DDE signals using the Monte-Carlo
simulator DisimPy [8], applying 16 isotropic rotations to minimize macroscopic anisotropy bias. Spine
densities o ranged from 0 to 3.5 spines/um and diffusivities D from 0.25 to 0.45 um?/ms.

- Model 2: Adds a non-exchanging spherical compartment (radius=5um, same diffusivity as spiny
dendrites) to Model 1 to represent somas in GM[9], whose signals were generated analytically using
MISST [10], with soma signal fractions fs € [0.05;0.34].

In-vivo data: Seven C57BL/6J mice (4 overexpressing amyloid precursor protein, APP+; 3 wild-type,

APP-) were scanned on a 11.7T scanner using a cryoprobe. The MRS acquisitions were performed in a
15 pl voxel positioned in the cortex, using the protocols in [11] (SDE) and [5] (DDE). Water signal was
suppressed using a VAPOR module. Signhal post-processing was performed as described in [12].

Inference: We estimated posterior distributions of g, D and fs using uGUIDE [13], a Bayesian inference

framework, using the SDE and DDE signals separately or combining them. We extracted three
guantities from the posterior distributions: the maximum-a-posteriori (MAP), an uncertainty value,
based on the interquartile range, and assessed degeneracies, that is multimodality in the distributions.
We trained it on 2x10° simulations with random combinations of the models parameters uniformly
sampled from biologically plausible ranges, with added Gaussian noise with SNR~N(135,13.5) to
match the noise in the acquired tNAA group-averaged (APP— and APP+) signals.

Results: Figld-e show examples of SDE and DDE normalized signals for varying spine densities. SDE
signals attenuate less with increasing spine density, while DDE B6-modulation decreases, suggesting
both sequences are sensitive to spine density. Fig.2 presents the estimated MAPs versus ground truth
values used for simulating the signals, uncertainty values distribution, and the percentage of
degenerate posterior distributions when considering SDE and DDE signals separately or jointly. Finally,
MGUIDE was applied to group-averaged mice in-vivo signals (Fig.3). Fig.3b (Model 1) shows distinct
posterior distributions between the two groups, suggesting measurable differences in microstructure.
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Discussion: Combining SDE/DDE acquisitions
allows to reduce uncertainty and remove almost
all degeneracies. The APP mouse model is known
to lead up to 50% decrease in spine density and
plaque-associated dystrophic neurites with
disrupted trajectories[14], which agrees with our
estimates of o and D from the neuronal tNAA.
Conclusions: Using simulations, in-vivo mouse
data and Al-based Bayesian inference, we show
that combining SDE and DDE-MRS enables
accurate and precise estimation of dendritic
spine density, providing a new avenue for in-vivo
studies of brain GM microstructure.
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Introduction: Concurrent electrophysiology (EP) and functional magnetic resonance imaging (fMRI) is
a powerful technique for investigating brain activity, offering insights into both electrical and
hemodynamic processes. However, a significant challenge in simultaneous EP-fMRI acquisitions is the
contamination of electrophysiological data by artifacts, primarily the gradient artifact (GA), which is
induced by the rapidly switching magnetic gradients of the MRI scanner. Traditional artifact correction
methods, such as Average Artefact Subtraction (AAS), are commonly employed to mitigate these
artefact [1]. New graphene-based electrophysiological recording technology, specifically Graphene
Solution-Gated Field-Effect Transistors (gSGFETs) [2], offers distinct advantages over conventional
electrodes, including a significantly reduced amount of metallic content that can interfere with MR
signals and the capability for high-fidelity DC-coupled brain signal recording [3]. Given these benefits,
there is considerable interest in performing simultaneous MRI acquisitions in animals with implanted
gSGFET probes. This pilot study aims to investigate the performance of these novel probes during
concurrent MRI acquisition in rodents within the MRI environment, with the specific goal of
understanding and effectively removing the gradient artifacts induced during MRI scanning.

Methods: Electrophysiology data were
acquired using 16-channel graphene arrays
of gSGFETs, identical to the Computer-Aided
Design (CAD) model presented in Fig. 1A.
Magnetic Resonance Imaging was performed
on an Agilent 7-Tesla, 16 cm horizontal-bore
magnet interfaced with a Bruker Biospec
Avance lll console. A custom-built 25 mm
diameter loop surface coil was designed for
both RF transmission and reception (Fig. 1B),
specifically due to the unavailability of space

18 mm

4.8 mm

to effectively accommodate the arrays and i 1. (A) Schematic CAD diagrams and dimensions of the
PCB in commercial volume RF coil. This RF coil  epjcortical probe (for a detailed description, see [4]);

was positioned above the rodent's head, (B)Custom-built transmit-receive loop RF coil.

with the graphene arrays cemented and their

PCB located inside the loop coil. The arrays were connected via a long MRI-compatible cable to a
recording amplifier, which was situated outside the MRI’s safety line.

Electrophysiological data were recorded on a healthy rodent at a sampling rate of 50 kHz using a 32-
channel recorder system configured for 16-channel active recording (Multichannel Systems). The raw
data were subsequently exported to the EDF for inspection and gradient artifact correction using
either BrainVision Analyzer or EEGLAB software. Due to the absence of direct synchronization
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between the MRI scanner clock and the MCS amplifier, automated artifact correction features within
these tools were not effective. Consequently, manual marker detection was performed for each slice
repetition time (TR) before applying the AAS correction algorithm to the raw electrophysiology data.

. L A
Results: Prior to data acquisition, the custom- R Data

built RF coil underwent rigorous tuning and e v AR,
matching procedures inside the MRI scanner, H

utilizing a uniform saline phantom loading. T
This process ensured optimal resonance at Detection
300 MHz, as verified by a Vector Network
Analyzer (VNA). Figure 2 illustrates the
comprehensive workflow implemented for

GA correction, alongside a representative
single slice of the generated artifact
template. Figure 3 visually shows the
electrophysiological raw data following the
crucial manual marker detection step, clearly A
demonstrating the substantial reduction in

100 = — L ‘ I -
gradient artifacts after the application of the _ (F r r F f.

B

Fig. 2. (A) Workflow for unmarked GA correction;
(B) Single-slice artefact template.
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AAS correction algorithm. s0f |
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Discussion: This work shows an progressive or : || ! ]
effort in utilizing graphene-based technology 0 500 7000 1500
for the acquisition of electrophysiology data B e

in a healthy anesthetized rat during an active
fMRI  session. As anticipated, the
simultaneously recorded electrophysiological B0 f
data were significantly contaminated by MRI-
induced events, particularly the gradient

L )

0F

artifact. Our findings clearly demonstrate 0 500 1000 1500
that while the AAS method effectively Fig. 2. (A) Raw data after the marker detection;
corrects a substantial portion of these (B) Electrophysiology data after the GA correction.

artifacts, some residual artifacts persist in the corrected data. This highlights the efficacy of AAS as a
primary correction strategy but also underscores the complexity of completely eliminating all MRI-
related interference, suggesting avenues for further refinement in artifact removal techniques for
future concurrent EP-fMRI studies with these novel probes.

Conclusions: This pilot study successfully demonstrated the feasibility of acquiring electrophysiology
data using novel graphene-based probes concurrently with fMRI in a rodent model. The AAS method
proved effective in substantially removing these artefacts. While some residual artifacts remain, this
research validates the potential of gSGFET technology for simultaneous EP-fMRI. Future studies will
focus on further optimizing artifact correction strategies, crucially involving the clock synchronization
between the two modalities, and advancing studies on diseased animal models to unlock the full
potential of these advanced probes for high-fidelity brain signal recording in the MRI environment.

Acknowledgements: This project is funded by the EPSRC under grant no. EP/X013669/1. The authors
are grateful for the support from Simdlife, ZMT for providing the science license.
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15

High-resolution T;-weighted magnetic resonance imaging of myelinated fibre tracts in the
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Introduction: Ex vivo brain MRI provides an opportunity to non-invasively explore murine cerebral tissue
with histological-level resolution, without destructive tissue sectioning. However, achieving high spatial
resolution even at high field strengths, such as 9.4T, comes at the cost of prolonged acquisition times,
often requiring over 6 hours or more to achieve isotropic voxels smaller than 100 um? [1], [2], [3], [4]. The
aim of this work was to optimise the radiofrequency (RF) receiver exploiting within loop detection for
explanted brain tissue and to capture high resolution structural images to explore their potential to track
myelinated fibre tracts without the need to conduct diffusion tensor imaging.

Methods: Three coils were used for this study: a) a 2x2 phased array for mouse head imaging, b) a single-
loop receive-only detector with 10 mm

diameter, and c) a home-built inductively | () 2xsufacearay | (8)Single Element (C) Homebuilt RF Coil
RF Coil Loop RF Coil

coupled transceiver coil with 15 mm
diameter (1 mm thick silver wire, fixed value
tuning capacitor, one trimmer capacitor for
variable tuning, and a linear translational
mechanisms for matching inside the bore of
the magnet all mounted to a 3D-printed
polylactic  acid (PLA) housing, Q
unloaded/loaded=380/200). The coil
performance was evaluated using two in vitro
murine brains (10% formalin fixation for
approximately 12 months). While coil (a)
was assessed on the first brain, coils (b) and
(c) were assessed on the second brain. T-

weighted images were acquired using a 2D | e S | B

RARE sequence (coil a: TR=2500 ms, TE=8.25 Fig. 1. Top row: Photos of the three RF coils used (A. 2x2
ms. TA=2.67 min. coil b: TR=2200 ms' TE=8.75 surface array, B. Single element loop, C. Homebuilt). Middle
ms' T A—.12 32 ’min éoil o TR—2'5 00 r.ns row: lllustration of configuration between RF coil and ex vivo

i - . murine brain sample. Bottom row: SNR maps of three
TE=8.33 ms, TA=12.0 min) at 9.4T (Bruker different MRI scans of an ex vivo murine brain. All SNR maps

BioSpec 94/20). Coil geometries were | range from zero (dark blue), to 200 (bright yellow). Scale
assessed for Signal to Noise Ratio (SNR) | bars on the bottom-left are 1 mm in length. SNR was
efficiency and homogeneity using MATLAB | normalised to a voxel size of 78 um x 55 um x 700 um, and
(Natick, MA, USA). For comparison SNR was | a total acquisition time of 2.67 minutes

normalised to a voxel size of 78 um x 55 pum x
700 um, and a total acquisition time of 2.67 minutes (Fig. 1). The highest performing coil b was selected
for the final ultra-high resolution in vitro brain scan at 25 um isotropic resolution using T1-weighted 3D
FLASH sequence with a total acquisition time of 21.2 hours (TR=50 ms, TE=15.94 ms, flip angle=20°) (Fig. 2).
Images were processed in Matlab.

Results: As expected, the SNR in regions closer to the receiver array gained higher SNR for coil a. However,
SNR dropped considerably for sub cortical regions. The equivalent SNR was highest for the single-receive

Session 3: MRl and MRS: Preclinical Studies and Cancer
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only coil b. Yet, the proximity of the brain tissue to the
coil conductor posed challenges in terms of field
homogeneity set-up — resulting in considerable
susceptibility related distortions in the cortex.
Excellent results were found with the slightly larger
diameter home-built coil. Coil b provided maximum
SNR in caudate putamen and was therefore used for
super high-resolution imaging achieving 25um
isotropic resolution. Such high resolution enabled
visualising the myelinated fibre tracts. Fibre tracts
were segmented in each image and 3D volume
segmentation of the binary maps enabled a first
representative computation of myelinated fibre
tracts in the caudate putamen.

Discussion: The gold standard can be considered to
be small angle neutron scattering (SANS) that for a 60
pum thick brain slice offered fibre tract resolution in
the range of 1.3 um [5]. The resulting images in this
whole brain study exhibited exceptional anatomical
detail, with clear visualisation of myelinated fibre
tracts traversing the caudate putamen, as well as
distinct contrast between white and grey matter
regions, such as the corpus callosum and cortex.
Diffusion Tensor Imaging (DTI) requires repetition of
data acquisition for many diffusion directions limiting
higher spatial resolution and facing uncertainty
related to crossing fibres (isotropic voxel resolution is
approximately 100 pm in 2 hours) [6]. Direct
anatomical resolution of fibre tracts using MRI may
offer a means to validate existing DTI reconstruction
approaches.

Conclusions: These results highlight the importance

Axial View - 25 um isotropic resolution

Sagittal View - 25 um isotropic resolution Coronal View - 25 um isotropic resolution

Fig. 2. T1-weighted, ultra-high resolution 3D FLASH
scans of ex vivo murine brain, with a voxel size of 25
um x 25 um x 25 um (TR=50 ms, TE=15.94 ms, flip
angle=20°, TA = 21.2 hours). Top row: axial, sagittal,
and coronal views, scale bars are 1 mm in length.
Middle _row: zoomed in TI1-weighted image
highlighting myelinated fibre tracts as signal voids in
caudate putamen. Bottom row: reconstructed fibre
tracts in caudate putamen.

of tailored RF coil selection in balancing SNR and spatial coverage for ex vivo specimen. Reconstruction of
myelinated fibre tracts may become a viable method to explore ex vivo brain structures in the future.
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fMRI and pCASL study in healthy volunteers

Laith Alexander®?, Edie Charles'?, Vasileia Kotoula', Mitul Mehta?

!Centre for Neuroimaging Sciences, King’s College London, UK.
2South London and Maudsley NHS Foundation Trust, London, United Kingdom
3University of Cardiff, Cardiff, UK.

Introduction: The recall of emotionally-valenced memories is relevant to rumination, defined as
dwelling on negative thoughts, their causes and their consequences. Rumination is a transdiagnostic
vulnerability factor for mood and anxiety disorders, yet its neural correlates are poorly understood.
We used a personalised autobiographical memory task during fMRI to understand the neural
substrates of negative vs. positive autobiographical recall, and how this relates to differences in
rumination.

Methods: 20 healthy volunteers (12 females, 8 males) completed the Rumination Response Scale
(RRS) questionnaire (Nolen-Hoeksema et al., 1999), and took part in a semi-structured interview to
elicit statements and images regarding a positive and negative memory (Life Events and Difficulties
schedule; (Brown & Harris, 1978)). Participants then underwent a single fMRI session. The fMRI task
comprised echoplanar imaging (EPl) and pseudo-continuous arterial spin labelling (pCASL)
components, to understand short-term changes in activation vs. intermediate-term changes in blood
flow, respectively. During EPI, statements extracted from the positive or negative memory were
presented (with block order pseudorandomised), interspersed with a counting task as an explicit
baseline. We determined recall-specific (recall minus counting) activation during negative and positive
memory statements (one-sample t-tests), together with negative vs. positive recall-specific activation
(paired t-test). We additionally explored whether activation in identified significant clusters were
correlated with trait RRS scores. During pCASL, two images (relating to the same positive or negative
memory) were presented for three minutes each following EPI blocks. The contrast of interest was
[Negative Images] vs. [Positive Images] (paired t-test).

Results: Recall-specific activation was observed within the default mode network (DMN) and medial
temporal lobe for both positive and negative memory statements, supporting the task’s construct
validity for eliciting autobiographical memory processes. Recall-specific activation during negative
statements vs. positive statements was greater in the right anterior insula and dACC (Figure 1), and
the degree of activation within the right anterior insula correlated with baseline RRS scores.

right anterior insula
k=1838

Fig. 1. Increased recall-specific (recall minus counting) activation of the right anterior insula (k =
1,838 voxels) and dACC (k = 1,208 voxels) during negative vs. positive memory statements. Cluster-
extent corrected, voxelwise p < 0.005, a < 0.05.

Whole brain pCASL analysis revealed increased right amygdala blood flow during negative memory
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recall vs. positive memory recall (Figure 2).

right amygdala
K=104

Fig. 2. Increased regional cerebral blood flow to the right amygdala, as measured by pseudo-
continuous arterial spin labelling (pCASL), during negative vs. positive image viewing. p < 0.005,
uncorrected.

Conclusions: Our novel, personalised autobiographical memory task robustly elicits circuits involved
in autobiographical recall. EPI reveals nodes of the salience network — including dACC and right
anterior insula — show increased activation during the short-term recall of negative vs. positive
autobiographical information. pCASL highlights that over intermediate time courses, blood flow to the
right amygdala is increased during negative vs. positive recall. These findings provide insight into the
limbic network underpinning emotional autobiographical memory and rumination. It informs novel
targets for neuromodulation interventions in mood and anxiety disorders.

Acknowledgements: NIHR Academic Clinical Fellowship to LA (ACF-2022-17-016). Royal College of
Psychiatrists Academic Trainee Small Grant award to LA.
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Background: Fatigue is a prominent symptom in multiple sclerosis (MS), affecting up to 75% of
individuals [1]. Altered brain metabolite concentrations have been related to MS fatigue [2], but the
relationship between brain metabolite changes and fatigue in MS, particularly following exertional
fatigue, remains unclear. This study aimed to investigate the acute effects of fatiguing isometric
wrist extension contractions in people with MS (pwMS) compared to healthy controls on brain
metabolite concentrations in the anterior cingulate cortex (ACC), a key brain region in the
perception of fatigue in MS [3].

Methods: Twenty-two pwMS (EDSS <3.5, relapsing-remitting, 3 male) and 22 age and gendered
matched healthy controls underwent Magnetic Resonance Spectroscopy (1H-MRS) before and after
performing fatiguing wrist extension exercises. 1H-MRS data were acquired from the dorsal ACC
using a semi-localisation by adiabatic selective refocusing (sSLASER) sequence [4]. Wrist extensor
contractions were performed inside the scanner with the aid of an MRI compatible wrist ergometer
(Fig. 1). Participants’ ratings of fatigue and perception of effort were measured prior and post the
fatiguing wrist extensions. Concentrations of glutamate + glutamine (Glx), lactate, and total creatine
(tCr) were measured in the ACC, a key brain region in the perception of fatigue in MS [4]. Linear
mixed models were used to analyse group differences and exercise-induced changes in metabolite
concentrations.

Figure 1. Experimental set-up and participant positioning for the MRI-compatible wrist
extension ergometer. Panel A depicts the experimental set-up of the positioning of the
participants in the MRI scanner with the MRI-compatible ergometer attached to their right
forearm. Panel B shows a close-up of the positioning of the MRI-compatible wrist extension
ergometer on the forearm.

Results: PwMS exhibited significantly higher lactate concentrations in the ACC compared to controls
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(F1,423= 7.08, p = 0.011, %= 0.14) (Fig. 2; B). No significant differences were observed in Glx
concentrations between groups or following exercise (Fig. 2; A). A significant interaction effect was
found for tCr (Fp,41.3) = 4.63, p = 0.037, ny,2= 0.10), with tCr significantly decreasing after exercise-
induced fatigue by 0.29 mmol/kg post-exercise in controls (t3) = 3.09, p = 0.02) but remaining stable
in pwMS (Fig.2; C). A moderate significant association was observed between changes in lactate and
perception of effort in pwMS (r=0.51, p = 0.04).
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Figure 2. Comparison of glutamate + glutamine concentrations (A), lactate (B) and total
creatine (C) in control and multiple sclerosis groups before and after exercise. GlIx: glutamate
+ glutamine; tCr: total creatine; CG: control group; MS: multiple sclerosis; *: p < 0.05.

Conclusions: This study provides novel evidence of metabolic differences in the ACC of pwMS,
characterised by elevated lactate levels and stable tCr concentrations post-exercise. These findings
suggest altered energy metabolism in MS, potentially linked to mitochondrial dysfunction and
impaired oxidative phosphorylation. These metabolic alterations in a key fatigue-processing brain
region offer new insights into the neurobiological mechanisms underlying MS-related fatigue and
may inform future therapeutic strategies.
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Introduction

Functional MRS (fMRS) offers considerable potential for probing neurochemical dynamics during
task-related brain activation. Conventionally, fMRS is performed using block designs with spectra
averaged across sustained task and rest periods'*, but event-related designs may better resolve fast
glutamate (Glu) responses®’. A mixed block/event-related approach may offer analytical flexibility,
though considerations of sensitivity and timing are essential. Here, we measured Glu dynamics using
SLASER (TE=80 ms) during a mixed-design working memory (WM) task in healthy volunteers.
Methods

20 healthy volunteers aged
20-37 years (mean: 29 years, SD: 5
years), eleven female and nine
male, were scanned at 7T (Philips
Achieva) using a 32-channel
receiver coil (Nova Medical). Single-
voxel MRS was performed using
semi-LASER localisation® (TR="5s,  Fig.1: Subject-averaged MRS voxel position on MNI-152 image
20x20x20 mm?, N=2048, BW=6 showing consistent placement in medial prefrontal cortex.
kHz, TE=80 ms).

During fMRS acquisition,
participants performed an associative visuospatial WM task. Each memory trial began with the
Encoding phase (2500ms) in which participants memorised the colours, shapes and locations of four
stimuli. In the subsequent Recall phase (2500 ms), which followed a variable maintenance phase
(0.83-5s), a specific shape or location was probed, and participants responded by selecting the
associated colour. In Control trials (without WM load), participants were presented with only one
coloured shape and asked to indicate the colour while the stimulus was still on the screen. The fMRS
experiment was performed over blocks of 16 trials of either WM Task or Control, separated by 30 s
rest periods (see Fig. 2). To obtain time course data, trial onsets were jittered across each block using
16 evenly spaced inter-stimulus intervals (ISIs) (0—2500 ms). A total of four runs were acquired in a
counterbalanced design. An initial rest period served as a baseline for each run.

Spectra were processed using FSL-MRS® and fit using a truncated-Newton algorithm (no

630s (10m. 305) baseline, with macromolecules at 0.9
= — S ——— = = and2.1 ppm). Event analysis grouped
spectra across trials by phase
(encoding, recall and control
Control Trial NSA=32/run/phase), while time course
analysis further split spectra into bins
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The averaged event analysis revealed
non-significant increases in all phases
Control Encode Recall 1 2 3 4 (Control, Encoding and Rest) with Glu
Fhase Rn relative to initial rest spectra (Fig. 3).
Overall non-significant increases in
the different trial types (i.e. phases) (a) and across different Glu were seen in Runs 1, 2 and 3 and
runs (b). With errorbars representing standard errors. a decrease in Run 4. Reaction Times
for the control task were 0.9 £ 0.2 s

Fig.3: Average Glu concentrations over runs and subjects for

and for the memory task 1.4 + 0.1 s.

Time course analysis (Fig. 4) showed significant Glu increases occurring during Recall at 0.75,
1.083 and 1.417 s following probe, and in Control at 2.417s. This supports distinct temporal Glu
profiles for each phase.

Discussion

The medial frontal cortex is implicated in WM maintenance®®, and Glu fluctuations in the dorsolateral
prefrontal cortex (DLPFC) during WM tasks are documented!?, consistent with its role in WM*2. Glu
modulation is most pronounced during recall*?, aligning with our findings of non-significant Glu
increase during the recall phase.

In the time course analysis the first in vivo evidence of statistically significant Glu peaks at
~1.5 s post-stimulus is shown following a WM task, at a temporal resolution of ~300 ms. These
dynamics extend beyond previous work which identified peaks in the 300—1000 ms range®. Event-
related fMRS has been previously used to investigate excitatory/inhibitory balance’, but longer
measurement period post stimulus was needed to resolve later dynamics shown here!*. Prominent
peaks are observed in the control phase at time points corresponding to reaction times, while the
largest peak in the recall phase occurs at a similar time to that of the memory task reaction times.
Conclusion
We detect Glu non-significant increases relative to baseline during retrieval in a WM task. We report
the first time-resolved Glu responses for Task Data for Glu
encoding, recall, and control with ~300 ms 6
resolution, identifying a peak at ~1.5s.
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Introduction: A hallmark of Alzheimer’s disease (AD) is the presence of fibrillar amyloid-B (AB)
plaques. The use of standardised uptake value ratios (SUVRs) in amyloid-PET enables quantification of
plaque burden. PET SUVRs have enabled early detection of AB pathology[1], however, PET is costly,
involves exposure to ionising radiation, and is limited by radiotracer availability. Multi-delay arterial
spin labelling (ASL) allows for the quantification of cerebral blood flow (CBF) and arterial transit time
(ATT) non-invasively. Perfusion changes may emerge during early AD-AB pathology via multiple
mechanisms; reduced flow may impair glymphatic clearance of soluble AP, while AB induced
microvascular damage may decrease perfusion. Importantly, recent studies have reported inverse
associations between regional CBF and AR burden, particularly in early AD and MCI, suggesting that
vascular and amyloid changes may interact in these stages of the disease[2].

Global reductions in CBF have been consistently observed in patients with mild cognitive impairment
(MCI; a state seen preclinically but not exclusively in AD) and AD, especially in early amyloid-affected
regions such as the precuneus[2; 3]. Meta-analyses of voxel-wise ASL studies confirm regional patterns
of reduced CBF in AD, yet few compare directly to amyloid PET in the same participants or utilise ATT
measures[4]. These analyses assess whether regional hypoperfusion and AB plaques co-localise in
early AD, using CBF and ATT metrics to better characterise the spatial and temporal dynamics of
pathology. This approach could enable alternative sensitive, localised, and biologically meaningful MR
perfusion biomarkers, informing amyloid pathology detection and the proximal aetiology of AD.

Methods: Thirty-four adults (60—80 yrs; mean 70.0 + 4.8 yrs, 10 amyloid-positive) with Montreal
Cognitive Assessment >17 were recruited from community and clinical sources, resulting in a group
ranging from normal cognition to MCI. All participants underwent simultaneous MRI and PET on a 3T
GE SIGNA PET/MR scanner. Twenty-six received ["®F]Flutemetamol and eight ["®F]Florbetaben PET. Full
methodological details are described in McFadden et al. (2025)[5].

MRI: We acquired a 3D T1 MPRAGE and multi-delay ASL data using pseudo-continuous ASL labelling
and 3D spiral FSE read-out, with six label durations of 0.573, 0.885, 2.042, 0.573, 0.885, 2.042 secs and
six paired post-label delay times of 0.700, 1.273, 2.158, 1.000, 1.573, 2.458 secs. Calibrated CBF and
ATT maps were generated using FSL BASIL with a 1.5 sec BAT prior, and voxel wise MO calibration [6].

PET: Static time-of-flight reconstructions used the VPFX protocol (4i, 28s, full corrections, ZTE-derived
attenuation correction) averaged over 90-110-minute post-injection. Binary amyloid status was
classified by an experienced clinical neurologist.

Quantification: CBF, ATT and PET were co-registered to participants T1lw native space using FSL FLIRT
and SPM12 MATLAB respectively. T1w images processed in FreeSurfer[7] using the Destrieux[8] atlas
generated 105 subject-specific cortical and subcortical parcellations. Segmentations were used for
PET partial volume corrections (Labbé and region-based-voxel-wise correction in PETPVC[9]). Nine
composite ROIs and a control region (Table 1) were defined a priori, informed by consensus literature
on regions of early AB accumulation in AD[10]. We extracted regional volumes and median values for
CBF and ATT and calculated AB-PET mean SUVRs normalised to the cerebellum.

Statistical Analysis: Welch's t-tests were used to assess group differences in mean SUVRs across 10
regions (Table 1), (a < 0.005 for multiple comparisons). Associations between CBF, ATT and SUVR were
assessed via multiple linear regressions (MATLAB) for each ROI and the control region.



19

Results: Mean SUVR was markedly higher in Table 1. Mean regional SUVRs differences for amyloid + and —
amyloid-positive across all ROls, with participants, normalised to cerebellum. Compared via Welch’s t-
statistically significant differences (p < .0001) tests (a <.005). ACC includes rostral & caudal subregions. Medial

. . temporal region includes hippocampus & entorhinal cortex.
observed in most regions (Table 1).

- Anatomical Region % Difference of t-stat  p-value
) Inferior Parietal Lobule +ve & -ve SUVRs

_ 5 Medial Temporal 27 3.09 0.0108

i I = Anterior Cingulate 186 11.02 <.0001
o B = 1.05, Adj. R® =0.19, . .

g dof = 32, p = 0.0062 v Medial Orbitofrontal 167 12.52 <.0001

o D . v v Precuneus 229 9.71  <.0001

é b4 Posterior Cingulate 225 9.35 <.0001

g = Inferior Parietal 191 7.43  <.0001

< > Middle Temporal 163 9.20 <.0001

0.5, St o _us = Inferior Temporal 130 7.44 <.0001

i il Superior Temporal 134 9.50 <.0001

1.2 1.4 1.6 1.8 2 Cuneus (control) 45 2.12  0.0596

ATT (s)
Table 2. Linear regression results for regional SUVR regressions with arterial transit time
Fig 1. Scatterplots of SUVR (ATT) and cerebral blood flow (CBF). B coefficients, 95 % CI and p-values for each region.

versus ATT in the inferior ATT CBF
p arieltal /ob_ule (above) and Region 8 [95 % ClI] p-Value 895 % Cl] p-value
"l’)"le”of _ Cl’”g_‘”ate cortex “\nedial Temporal 0.173 [-0.100, 0.445] .207 | —-0.001{-0.006,0.005]  .844
(below; inc. f INg regression - anterior Cingulate 0.871[0.476,1.267] <.001 | —0.008 [-0.015,-0.001]  .025
line and 95 % Cl) Medial Orbitofrontal  0.934 [0.433, 1.434] <.001 | —0.011[-0.021,-0.001]  .028
Regressions with o = Precuneus 0.949 [0.403, 1.494]  <.001 | -0.012[-0.025, 0.001] .065
0.005 revealed no Posterior Cingulate 0.894[0.343,1.444]  .002 | —0.008[-0.019, 0.004] .184
e Inferior Parietal 1.026 [0.532, 1.520] <.001 | -0.010[-0.021, 0.001] .080
5|gn|f|‘ca-nt .CBF SUVR' \tiddle Temporal 0.708 [0.007, 1.409]  .048 | —0.007 [-0.025,0.009]  .302
associations in any ROI Inferior Temporal 0.890 [-0.009, 1.790]  .052 -0.003 [-0.019, 0.013] .693
and ATT-SUVR showed Superior Temporal 0.635[0.235,1.035]  .002 -0.005 [-0.014, 0.004] .258
early-affected regions (Table 2) below p <.05 but fell short
v Amyloid Positive . . .
; ACC « amyeidneganve| OF the strict p <.005 threshold. The strongest relationships
— 95% CI . . H
e ¥ ¥ | —segesionune | are shown in Fig 1. In the cuneus, metrics showed the
< 1s * - v weakest relationships to SUVR, supporting this as an
—~ ¥ w . . epe .
« v amyloid control region and the specificity of these
2 1 exploratory ATT findings
= B = 0.93, Adj. R =0.11, .p . y ) g :
g & . dof =32, pval =0.0334 Discussion: These findings suggest that ATT, but not CBF,
s gresh o i may correlate with amyloid plague burden across multiple
08 1 12 14 16 early affected regions, with the cuneus control region
ATT (s) remaining unlinked. While associations did not survive strict

Bonferroni correction, initial trends underscore potential biologically plausibility. Our findings support
regional specific changes and suggest that altered ATT may reflect early AB—vascular interactions.
However, CBF changes were possibly masked by a mixed pathology cohort, and effects of age and
atrophy on ATT and SUVR warrant covariate adjustment in future studies. While limited sample size
may have reduced capacity to produce robust relationships, findings suggest regional microvascular
dysfunction is reflected in ATT changes, rather than global CBF.
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Introduction: Timing in region-to-region propagation is fundamental for brain function, and its
characterisation is key to better brain modelling and to understand changes in pathologies.
Segregated neuronal populations in grey matter (GM) interact through white matter (WM), and
resulting delays are constrained by both WM and GM properties. Tract length, axonal radius and
myelination directly influence conduction, but their role in macroscopic propagation is less clear [5].
To shed more light on the determinants of these end-to-end propagation phenomena, we combined
MEG with MRI, respectively estimating propagation delays (PropD) with neuronal avalanches [9],
and computing WM and GM properties.
Methods: 60 healthy participants (mean age [SD]:20.97[1.65]; F/M=36/24) had MRI (Siemens
Connectom 3T) and MEG (275-channel CTF radial gradiometer) [6]. MRl included an anatomical
(T1w) scan, 2 diffusion-weighted imaging (DWI) protocols (multi-shell DWI and AxCaliber) [1], and
multi-component relaxometry (McDESPOT) [4]. MEG data (sampling:1.2kHz) were acquired at rest
for 10 minutes with eyes open and fixated on a cross. T1w data were processed with FreeSurfer for
atlas parcellation and cortical thickness (CT) extraction. DWI underwent denoising, artifact
corrections and registration to the T1-weightwed images. Tractograms obtained with multi-tissue
spherical deconvolution and anatomically constrained tractography were filtered using COMMIT
(stick-zeppelin-ball model) [4]. We also fitted two microstructural models: NODDI - for neurite
density (NDI) and isotropic fraction (ISO) - and SANDI - for myelinated neurite (FN), soma fraction
(FS) and soma radius (RS) [7]. AxCaliber data were fitted with COMMIT-AxSize, to estimate bundle-
specific axon radii [2].
McDESPOT data were processed using QUIT to estimate myelin water fraction (MWF). We combined
MWEF, ISO and NDI to compute the g-ratio (i.e. inner/outer axon diameter ratio) [10]. Structural
connectivity matrices (streamline count, length, g-ratio, radius) were computed and thresholded
using a >4 streamline cutoff and a 60% group-consensus mask. Using the Rushton model [8], we
derived a conduction delay-weighted (CD) matrix by integrating radius, g-ratio and length. For each
pair of regions and each GM metric (CT, FS, FN, RS), we also summed their values to quantify their
end-to-end contribution. MEG data were filtered (1-150Hz), epoched (2s) and downsampled (512Hz)
before beamformer source-localisation and computing mean timeseries for each DK region.
Neuronal avalanches were defined as periods of continuous z-scored activity >3 SDs, binned using a
time window size calculated based on previous literature [9]. Duration (PropD) was averaged per
avalanche to generate PropD connectivity matrices (see Figure 1 for reference). Comparisons were
made on group-averaged matrices.

Neuronal avalanches

White Matter Metrics

perties (summed

Axonal Radius map L <3
WM weighted connectivity for each pair of nodes)

Figure 1. Summary of analysis: the overthreshold MEG signals are used to estimated neuronal avalanches and
those are combined into a propagation delays (PropD) matrix; the white matter (WM) properties are assessed
along the connections and used to build the related connectivity matrices; the grey matter (GM) properties are



20

computed for each node and combined pairwise; the resulting matrices are then compared to study how PropD
changes with WM and GM.

Results: Figure 2. shows the relationships between the PropD and the WM-GM metrics. For WM,
longer tracts are associated with longer PropD. PropD also increases with CD, but as CD is estimated
dividing by length by conduction velocity, this trend is likely due to length as well. PropD shows little
variation with axonal radius and with g-ratio - suggesting a different role compared to simple
conduction and likely affected by the bias towards larger axons. For GM, PropD increases with CT
and FS, and decreases with FN, so thicker layers (higher CT) could increase PropD, while myelinated
neurites (higher FN) could shorten them. FS- PropD trend requires further study but, together with
flat RS, suggests that more somas would increase PropD.

ad g Propagation delay s Prapagaton defay [s]
Figure 2. Relationship between propagation delays from MEG and WM metrics (in blue) as well as GM metrics
(in green) from MRI, with each point representing a connection in the group connectivity matrix. The red lines
are obtained through linear regression (ordinary least squares).

Conclusions: Our results show that GM-WM microstructure provides additional insights into
propagation delays and can potentially aid their prediction.
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compared with Europeans

Mueed Azhar', Amy Barrett?, Jieniean Worsley?, Elspeth Johnson?, Mandour O. Mandour?®, Emanuella
De-Lucia Rolfe*, Katherine Carr3, Michele Ferraro?, Ranalie De Jesus®, Samuel King?, Sherly Jose3,
Simon R. White®, Peter Barker*, Graham J. Kemp®, Kevin M. Brindle’, Nita G. Forouhi*, Michelle
Venables*, Laura Watson®*, Leanne Hodson?, David B. Savage*, Alison Sleigh®3*

IClinical Neurosciences, # Institute of Metabolic Science, > MRC Biostatistics Unit, ” CRUK Cl & Dept of
Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.

20CDEM, RadCcliffe Department of Medicine, University of Oxford, Oxford, UK.

3NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust,
Cambridge Biomedical Campus, Cambridge, UK.

¢ Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK

Introduction: South Asians (SA) have a higher risk of developing type 2 diabetes and cardiovascular
disease compared to their European-origin (E) counterparts with the same body mass index (BMI).
One proposed mechanism underlying this disparity is increased hepatic de novo lipogenesis (DNL) [1].
Biopsy is invasive, and traditionally DNL in humans is quantified using tracer studies with blood
sampling [2], offering only indirect estimates of the impact of DNL on liver fat. In this study, we use
non-invasive deuterium magnetic resonance spectroscopy (2H-MRS) to quantify the storage of lipids
in human liver derived from DNL, comparing individuals of SA and E ancestry.

Methods: Thirteen healthy adult males (7 SA, 6 E), group-matched for age and BMI, and free from
chronic conditions, made two visits five days apart to the Cambridge Biomedical Campus. Visit 1: "H-
MRS to assess liver fat (IHL) and composition [3] at 3T, and 2H-MRS to measure pre-dose fat and water
signals at 7T using a RAPID Biomedical 2H/*H TxRx surface coil. For 2H-MRS, chemical shift imaging
(CSI_fid) with weighted acquisition (FOV 260 x 280 x 240 mm; grid 13 x 14 x 12, interpolated to 16 x
16 x 16) enabled spatially localised spectra covering the right abdomen. Reference voltage was
established and 4 datasets acquired with scan time of 6.37, 12.88 and 25.97 min with TR 330ms, and
13.52 mins with TR 700ms. Following an energy-balanced evening meal, participants consumed a
priming dose of 2H,0 (8pm & 10pm) to reach body water enrichments of ~0.3%, followed by
maintenance water to maintain a stable body water enrichment until their return visit, where the
same relocalised 7T scan was performed to quantify DNL-derived liver lipids using 2H-MRS. Liver
spectra were analysed using jMRUI [4] and OXSA (MATLAB) [5]. The TR 700ms scan was used for 2H
water signal, and an SNR-optimised combination of all 4 datasets for fat signal. 1.5 Hz line broadening
was applied and spectra baseline-corrected prior to integration. An external phantom within the coil
housing was used for normalisation between visits. Both fractional DNL (% of existing liver fat made
by DNL over the 5 days), as well as absolute DNL (absolute amount of liver fat made by DNL over the
5 days), were calculated. 2H fat signal reproducibility was assessed by comparison of 2H fat from 25.97
min scan with the optimally-combined other 3 scans. Studies were ethically approved and all
participants provided written informed consent. Statistics were performed in SPSS v28: Mann U
Whitney test, between-group comparison; absolute intraclass correlation coefficient (ICC), 2H fat
reproducibility; Spearman’s correlation coefficient, associations with other variables.

Results:

Table 1. Participant characteristics, expressed as median (Q1 — Q3)

SA E P value
Age, (years) 40.0 (28.0 - 42.0) 32.0 (25.8 — 44.8) 0.731
BMI, (kg/m?) 28.6 (26.5 — 31.6) 29.9(27.8-33.7) 0.534
Liver fat (CH2/[CH: + water]), (%) 6.2(2.4-16.7) 1.5 (0.8 -2.6) 0.035
Saturated liver fat, (%) 37.7 (32.1-52.1) 32.5(24.9-34.9) 0.181

One SA withdrew after Visit 1. Reproducibility of 2H-liver fat: ICC = 0.99 (pre-dose), 0.96 (post-dose).
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Fig. 1. 2H liver fat before (red) and after Fig. 2. Fractional (A) and Absolute (B) DNL, and their associations with
(blue) dosing with 2H,0. IH MRS liver fat (IHL) (C-D) in South Asian (grey bars & circles) and
Europeans (white bars & circles).

Fig. 1 illustrates the liver fat signal pre- and post-dose in a SA individual with 16.7% liver fat. IHL was
higher in SA vs E participants (Table 1). Both fractional and absolute DNL (%) were higher in SA (p =
0.041, Figs. 2A & B). They strongly correlated with IHL (fractional DNL rs=0.874, p=0.001, Fig. 2C;
absolute DNL r.=0.888, p=0.001, Fig. 2D). Absolute DNL positively correlated with IHL saturation but
fell short of statistical significance (rs=0.503, p=0.095).

Discussion and Conclusion: We have established a non-invasive method of measuring ?H fat and water
pre- and post-dosing with 2H,0, and used this to quantify the storage of liver lipids derived from DNL
in vivo in humans. The higher liver fat in SA aligns with findings from a meta-analysis [6], and the higher
fractional DNL suggests that a higher proportion of liver fat in SA is derived from DNL. This, together
with the associations of DNL and liver fat, suggests that DNL could play a pivotal role in driving the
increased liver fat in SA. This is consistent with Hudgins et al. [1] who showed increased lipogenic
sensitivity in healthy young SA, and as this was despite normal indices of insulin sensitivity in [1], this
suggests an early gene—nutrient interaction may contribute to this population’s high prevalence of
type 2 diabetes and coronary disease. Our findings highlight the value of 2H-MRS as a powerful non-
invasive tool for investigating human fat metabolism.

Acknowledgements: We thank the participants. This work was funded by the Medical Research
Council (MR/V011758/1). AS gratefully acknowledges salary support from the NIHR Cambridge Clinical
Research Facility.
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Development of high-resolution °F-MRI of inhaled perfluoropropane using a 6-channel
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Introduction: This study evaluated the ability of compressed sensing-parallel imaging (CS-Pl), and a
custom 6-channel *F receiver array (Rapid Biomedical, Germany) to accelerate °F-MRI of inhaled
perfluoropropane gas for measurement of lung ventilation properties. °F-MRI exhibits significant
signal limitations due to the low °F spin density in a gaseous phase, thermal polarisation and the
restrictions on total scan duration (and thus the amount of signal averaging) necessitated by
achievable breath hold durations. Phased receive arrays have shown 2-5x SNR gains over single-
channel setups in sodium phantoms’. Combined with CS-Pl, we anticipate these gains will enable
improvement of F-MRI scan resolution beyond the 10mm isotropic resolution employed in our
current respiratory

research studies, and A
with potential to also
reduce breath-hold
duration requirements.
The receive coil array
consists of a rigid
posterior and flexible

C

Receiver Channels

: a
anterior resonators
fitting within a transmit Fig. 1: Photo of the upgraded *°F receiver array inserts & birdcage coil (A).
birdcage coil, [/lustration of channel dimension sizes w.r.t participant (B). Schematic of receive

maximising proximity of channels and position within the array (C).

the receive coils to lung (Figure 1). Six elements were positioned in a 2x3 layout (3 anterior, 3
posterior), each with dimensions 35x40cm (H-F x L-R). This orientation supports acceleration along
the two phase-encoding directions (H-F and A-P) of the 3D gradient echo scan used for *°F-MRI.
Methods: Five healthy volunteers were recruited under Newcastle University ethical approval.
Participants performed three deep inhalations of a 79% perfluoropropane, 21% oxygen gas mixture
immediately prior to F-MRI scan acquisition on inspiratory breathhold. Prospectively accelerated 3D
F-SPGR scans were acquired at multiple scan resolutions and CS-Pl acceleration factors (Table 1) for
a total of n=5 healthy volunteers. We acquired scans at 25% of the voxel volume used in previous in-
house studies and compared
them to 10mm isotropic scans.
The change in image quality

19F 3D SPGR Acquisition sequence
10 mm 10 mm 7 mm 6 mm 7 mm 5x5x10

Parameters

isotropic isotropic isotropic isotropic isotropic mm

across acquisition resolution and 1.8x 6x 6x 6x 4x 4x
acceleration factor was assessed :"q“list‘_tm"/ 10x10 foxto o sxsx
visually. Scan duration was esolution x 10 x 10 R e 10

mm

Optimal A 0.05 0.05 0.005 0.005 0.005 0.005

Reconstruction 160 X 160 x 168 x 204 x 168 x 240 x
matrix size 128 x25 128 x25 132x36 156x42 132x36 192 x25

maintained at approximately 15
seconds for all °F-MRI scans by
adjusting the number of signal

averages (NSA) as matrix size and CsPi
acceleration factor (AF) changed. PSRy 1.8x 6.0x 6.0x 6.0x 4.0x 4.0x
All scans had the following B 19 10 7 7 7
. . Acauisih

common acquisition parameteri. cquisition 155 153 5 153 o5 63
TE=1.7ms, TR=7.5ms, FA=45°, [ECECIERVE

_ Number of
FOV=400x320x250 and umber o 1 1T 1T 1T =

bandwidth=500Hz/pixel. participants
Differences in image quality were Table 1: F-MRI scan acquisition parameters for the range of
evaluated qualitatively, acceleration factors and acquisition resolutions studied.
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comparing how clearly signal boundaries of the pulmonary volume are visibly defined and if known
structures such as the bifurcation of the trachea and pulmonary vasculature are visible. Image
reconstructions were repeated using only NSA = 1 of each dataset for scans acquired with prospective
6x CS-Pl acceleration to test the feasibility of high temporal resolution imaging, where the duration of
NSA=1 scans would be 0.8, 1.6, and 2.2s for isotropic resolutions of 10, 7 and 6mm respectively.

Results: Figures 2 show central slices 10mm isotropic | B 7 mm isotropic 7 mm isotropic
A 1.8x | | ©

of the pulmonary volume at each 6x

acquisition  resolution for a
representative participant. Figure 2E
shows substantially lower image
quality compared to  other

N NG WG NI NI JINAIR G SNR=28.0+2.9 | SNR=21.5+4.5 | SNR=30.7+9.9

bifurcation of the trachea and |

. . ' ) Fig. 2: 3D SPGR *°F D 6 mm isotropic 5x5x10 mm
blurring at signal boundaries. SNRis  cquisitions  of @ [ ax

11 or higher for all scans. healthy volunteer at
Figure 3 shows reconstructions using varied resolution and
a single average (NSA = 1) extracted acceleration factor.
from raw MR data used to generate !
the images in Figure 2. These images SNR=17.9+1.7 | SNR=11.4%1.4
show 6x accelerated scans with
o]0 T VAT ENT T IOl A 10 mmisotropic |g  7mmisotropic | G~ 6 mmisotropic
. . Scantime=0.8s Scantime=1.6s Scantime=2.2s
resolution, where the scan duration
for NSA=1 data would be 0.8, 1.6 and
2.2 seconds respectively. Calculated
SNRs of each resolution are
annotated. Images exhibit blurring
and lower SNR compared to the data
shown in Figure 2.
Discussion: This study presents the
first documented in vivo human 3D
9F lung MRI acquisitions of inhaled PFP with voxel volumes below 0.25mL. The reduction in signal
amplitude per voxel with decreasing voxel volume was mitigated by the gains delivered by CS-PI
acceleration and incorporation of a receive coil array into the °F birdcage RF coil. Comparisons of
image detail based on qualitative visual assessment of the reconstructions show that anatomical detail
varied with image resolution. Scans with 7mm isotropic resolution acquired with 4x acceleration show
greater anatomical clarity than scans with 6mm isotropic and 5x5x10mm resolution. This qualitative
improvement is likely due to higher SNR achieved from the larger voxel volume in the 7mm isotropic
scans. Poorer image detail and lower SNR were shown for scanned resolutions of 5x5x10mm when
compared to 6mm isotropic acquisitions. This is likely due to the larger k, and k, matrix sizes allowing
for improved incoherent sampling resulting in better suppression of image artefacts.
NSA = 1 reconstructions of highly accelerated 10, 7 and 6mm isotropic acquisitions were performed
with scan durations of 0.8, 1.6, 2.2 seconds, respectively. The data shows surprisingly effective imaging
of lung structure for such short acquisition times in comparison to previous non-accelerated scans with
an approximate 15s duration reported by our group (SNR = 11.7 + 4.1)%,
Conclusions: We have assessed the capability of CS-PI to increase °F-MRI scan resolution and reduce
scan duration. These findings are directly applicable to future °F-MRI studies of patients with
respiratory disease.
1. Amin Nazaran, J.D.K., Meredith Taylor, Daniel J Park, Grayson Tarbox, Rexford D Newbould, Neal
Bangerter, and Glen Morrell, An SNR Comparison Between a Sodium Phased Array Coil and a Single
Channel Coil. Proc 23rd Annual Meeting ISMRM Toronto 2015, 2015.
2. Neal, M.A., et al., Optimized and accelerated 19 F-MRI of inhaled perfluoropropane to assess regional
pulmonary ventilation. Magnetic Resonance in Medicine, 2019. 82(4): p. 1301-1311.

" 4

SNR=14.9+3.0 SNR=7.4+1.8 SNR=6.4+0.6

Fig. 3: Reconstructed images from NSA=1 3D °F SPGR scan data with
varied 6x accelerated isotropic resolutions.
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Introduction: Accurate spatial localization and characterization of
lesion shape and size are essential for breast cancer detection and
MRI-guided interventions [1]. This is particularly critical for small
lesions such as ductal carcinoma in situ (DCIS), which require sub-
millimetre precision and show reported detection sensitivities of 77—
96% [2, 3]. However, geometric distortions in breast MRI can impair
lesion localization and morphology assessment, potentially affecting
clinical decision-making [4]. We developed a dedicated breast
phantom with tissue-mimicking gels targeting the relaxation
properties of fibroglandular (FGT) and adipose tissue [5, 6], enabling
assessment of geometric distortion and shape fidelity. By comparing  Fig. 1: MRI Ti-weighted scan
MRI-derived centroid metrics to co-registered CT (distortion—free  (green) overlaid on CT
reference), we quantified geometric distortion in 3T T- and T,- (magenta)

weighted breast MRI. We further compared manual and automated registration strategies to assess
their influence on distortion magnitude and measurement reproducibility.

Methods: A custom 3D-printed breast phantom was designed to simulate FGT and adipose
compartments using relaxation-matched gels [5]. Twenty-three spherical fiducial markers and a
branching internal structure were embedded to introduce spatial complexity. Imaging was performed
on a 3T Siemens MAGNETOM Prisma using T:- and T»-weighted spin-echo sequences (T;w: TR = 500—
3500 ms, TE =7 ms; Tw: TR =500 ms, TE = 7-350 ms). A5 mme-slice CT scan served as the distortion-
free reference. MRI-to-CT rigid registration was performed using Fiji (Imagel) (Fig. 1). Two strategies

Geometric Distortion Comparison: Manual vs Automatic Registration  Were evaluated: ten repeated manual registrations

Tiw and T,w Sequences

by a single operator (to assess intra-operator

Summary Statistics:

niaat247:06mm |y arigbility), and automated rigid-body registration

175 T, Automatic: 4.49 + 3.36 mm
T, Manual: 1.45 + 0.68 mm

nawmaic7so:0smn | USING the StackReg plugin. For each registration,

— | etERdl | geometric  distortion  was quantified as  the
Euclidean distance between corresponding fiducial
centroids, extracted via thresholding and particle
% analysis. For each region of interest (ROI), mean
distortion and standard deviation were calculated.

% - Paired t-tests were used at each control point to
o - assess distortion differences between Tyw and T,w.
Registration precision and reproducibility were

compared between the two pipelines using

Fig 2: Comparison of geometric distortion - -
. . . standard deviation across repetitions.
between manual and automatic registration

methods for T;w and T,w MRI sequences Results: Tyw images yielded a mean distortion of
2.47 £0.95 mm with manual registration and

4.49 £ 3.36 mm with automatic registration. For T,w, distortion was 1.45 £ 0.68 mm manually and
7.59 + 0.95 mm automatically (Fig. 2). Distortion was significantly lower in T,w than T;w for both
registration methods (p <0.001). Manual registration consistently outperformed automated
registration in reducing distortion across all sequences. Intra-operator variability (standard deviation
across 10 registrations) was lower with manual alignment, confirming its greater precision (Fig. 3).
American College of Radiology (ACR) geometric accuracy threshold exceedance (+2 mm) [7] occurred
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minimizing sequences, many
measurements, particularly under
automated registration, exceeded ACR
thresholds, highlighting the persistent risk of distortion from field inhomogeneities and tissue
susceptibility differences [8]. Manual registration produced significantly lower distortion than
StackReg-based automated alignment, though at the cost of slightly higher intra-operator variability.
These findings demonstrate the trade-off between manual precision and automated consistency.
Limitations include the absence of DCIS-mimicking lesions and computational phantom validation with
known distortion fields to verify measurement accuracy.

Conclusions: T,w imaging demonstrated superior geometric accuracy with fewer ACR threshold
violations than Tw imaging, supporting its preferential use for sub-millimeter lesion localization
critical for DCIS detection and MRI-guided interventions. These findings emphasize the importance of
sequence-specific QA and optimal registration strategies to minimize geometric distortion.
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Introduction: With rising incidence of pathologies affecting the pancreas [1], methods for assessment
and monitoring are increasingly important. Quantitative pancreatic MRI enables non-invasive
assessment of pancreas volume, scanner reference T1 (srT1) [2-4], Proton Density Fat Fraction (PDFF)
[5], and Signal Fat Fraction (SFF) [6]. Such measures can be used to grade disease severity and could
assist in early detection, diagnosis or treatment response monitoring [7]. Manual assessment of
pancreatic MRI requires time and expertise, typically involving Regions-of-Interest (ROls) placement
in homogenous regions [8], so automation is essential for scalability. However, pathology is often
heterogeneous, and there is increasing focus on the pancreas head, body, and tail. We present
repeatability metrics for automatically segmented pancreatic MRI acquisitions.

Methods: The scan-rescan cohort (46 subjects) were collected across three imaging sites with Siemens
scanners (1.5T, 20 subjects; 3T, 26 subjects). Both scan and rescan acquisitions were obtained within
one imaging session, each subject exited then re-entered the scanner. The MRI protocol for each scan
comprised three sequence types: a 3D breath-hold, 2-point Dixon T1-weighted scan covering
abdominal region; 2D breath-hold MOLLI; and 2D breath-hold IDEAL. 2D Maps of srT1 and PDFF were
reconstructed using methods outlined in [2] from MOLLI and IDEAL scan data. 3D SFF maps were
derived directly from Dixon fat and water images.

An automated method [4] assesses the Dixon water volume image and generates a 3D pancreas
segmentation. Pancreas volume and SFF measures were derived using this 3D mask. Segmentation of
the mask into the head, body and tail was done [9]. The 2D srT1 and PDFF maps were aligned with the
3D mask. This allows propagation of the 3D mask to a 2D pancreas segmentation within the srT1 and
PDFF maps to extract percentile-based measures. Median percentile values were reported in all
measures, as well as lower percentiles for srT1, PDFF and SFF that have previously been shown as
useful [4]. Repeatability metrics (Bland-Altman bias and Limits-of-Agreement (LoA), repeatability (RC)
and intra-class-correlation (ICC) coefficients) were obtained for all measurements. Manual ROl based
scan-rescan assessment was also done across the same cohort, for srT1 and PDFF, enabling
comparison against the automated method.

Results: Full 3D pancreas volume segmentation, with resampled 2D segmentation masks for srT1 and
PDFF slices, were returned for the whole scan-rescan cohort (Figure 1a-d). Repeatability metrics (bias,
LOAs, RC, ICC) were reported (Table 1) with the cohort considered as split by field strength (1.5T or
3T) or combined (both 1.5/3T). Scan-rescan repeatability reported for the manual ROl method of srT1
(combined field strengths: bias=-8.2ms, LoA=[-66.0, 49.7]ms, RC=59.4ms, ICC=0.85) and PDFF
(combined field strengths: bias=0.3%, LoA=[-2.1, 2.7]1%, RC=2.4%, ICC=0.92) measurement, are
comparable with the corresponding automated values (Table 1).

Discussion: ICC values for all automated outputs were good (0.75-0.9) or excellent (>0.9) and are
comparable or better than the respective manual measurements. Repeatability metrics of 32.5th
percentile srT1 (Table 1) are in line with previous reported values [4]. The metrics represent the
repeatability performance of the pipeline without any manual or automated quality control to confirm
that the pancreas area is adequately captured. Future work should include assessment of cross-vendor
repeatability, as the cohort acquisitions were obtained using only Siemens scanners.

Conclusions: Quantitative pancreatic MRl measures derived from automatic segmentation show good
or excellent repeatability. The repeatability metrics of automatically derived measures align well with
manual ROI-based derived measures where comparative data is available.

References: [1] Smits and Van Geenen. 2011. The clinical significance of pancreatic steatosis. Nat Rev
Gastroenterol Hepatol. 8(3):169-177. [2] Dennis A, et al. 2023. Multi-organ impairment and long COVID: a 1-
year prospective, longitudinal cohort study. J R Soc Med. 116(3):97-112. [3] CoverScan v1 510(k) Premarket
Notification [4] Bagur, et al. 2025. Standardized pancreatic MRI-T1 measurement methods: comparison between
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manual measurement and a semi-automated pipeline with automatic quality control. BJR. 98(1170):965-973.
[5] Reeder, et al. (2012). Proton density fat-fraction: a standardized MR-based biomarker of tissue fat
concentration. JMRI. 36(5):1011-1014. [6] Bray, et al. 2018. Fat fraction mapping using magnetic resonance
imaging: insight into pathophysiology. BJR. 91(1089):20170344. [7] Wang, et al. 2018. Magnetic resonance
elastography and T1 mapping for early diagnosis and classification of chronic pancreatitis. IMRI. 48(3):837-845.
[8] Al-Mrabeh, et al. 2017. Quantification of intrapancreatic fat in type 2 diabetes by MRI. PloS one.
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Figure 1: Example segmentation output: (@) 3D pancreas segmentation rendered in place showing
head/body/tail (blue/green/yellow) with the Dixon water volume, (b) resampled Dixon water slice with
corresponding 2D mask overlaid as a pink outline, (c) PDFF map with 2D mask overlaid as a pink outline, and (d)
srT1 map with 2D mask area overlaid as a colourmap.

Table 1: Repeatability metrics for outputs derived from the automated pancreas pipeline. Outputs are grouped
by acquisition type. ICC reliability metrics are shown as good (0.75-0.9) in italics or excellent (>0.9) in bold.

1.5T (N=20) 3T (N=26) Combined (N=46)

Output | Percentile I e [LOA, LOA ]| ICC | RC |Bias [LOA, LOA ]| ICC | RC |Bias [LOA, LOA ]| ICC | RC
3 PDFF (%) 50 -0.5[-3.5,2.6] |0.90|3.1| -00[59 58 [092|57| -02[50,4.6] [0.92]4.8
§ PDFF (%) 25 0.1[1.3,1.1] [0.94|12| 01[-26,29 [0.96/27| 00[2222] [0.96] 2.2
g stT1 (ms) 50 -11.8 [-63.9, 40.3] | 0.76 |55.8| -2.0 [-100.6, 96.7] | 0.75|96.8| -6.2[-87.7, 75.3] |0.78(81.5
E srT1 (ms) 325 |-11.6[-45.0,21.7] | 0.85|39.7| -4.2[-70.8, 62.5] |0.84|65.8| -7.4[-62.1,47.3] |0.86| 56
_| SFF(%) 50 0.1[-20,22] [0.95|21| 02[19,22] [099] 2 | 02[19,22 |0.99| 2
% SFF (%) 25 0.1[-13,15] [0.92|14| 02[16,19] |098|18| 01[1517] |0.98| 16
Q
" | volume (mL) - -2.2[-105,6.1] |0.91]9.2| 36[-19.0,26.2] |0.82(23.3| 1.1[-17.5,19.7] |0.84|18.5
E Head SFF (%)| 50 01[3.2,33] |086/32| 00[4.242] |096|41| 00[-3738 095 37
% Body SFF (%)| 50 0.2[-2.8,32] [095|29| 05[23,33 [099)29| 03[2532 098|209
g Tail SFF (%) 50 04[-24,31 [093|28| -04[-39,32 |09835| -00[33,32] 09732




25

Session 5: Body MRI and MRS

What is the effect of a breath-hold on renal BOLD MRI scans?
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Neil Stewart?, Steven Sourbron?, Joao Periquito!
1School of Medicine & Population Health, The University of Sheffield, Sheffield, United Kingdom
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Introduction: Renal hypoxia is a key factor preceding renal tissue damage, arising from a mismatch
between increased oxygen demand due to hyperfiltration and reduced oxygen supply from impaired
perfusion [1]. Blood Oxygenation Level-Dependent (BOLD) MRI can detect changes in tissue
oxygenation by reflecting the oxy-/deoxy-hemoglobin ratio [2]. It promise as a non-invasive biomarker
for early detection of renal hypoxia and monitoring chronic kidney disease (CKD) progression [3].
Conventional renal BOLD MRI (T2* mapping) protocols often employ breath-holding to reduce
respiratory motion and imaging artifacts. However, breath-holding induces hypercapnia and may
trigger renal autoregulatory mechanisms, potentially confounding T2* measurements [4]. This study
aimed to investigate the impact of medium (up to 40 s) and long (up to 90 s) breath-holds on renal
BOLD MRI.

Methods: Data acquisition: Ten healthy volunteers were scanned using a GE 3T PET-MRI scanner with
a fast BOLD protocol. A multi-gradient echo sequence with 16 echo times (3.0-24 ms), TR = 55 ms, flip
angle = 25°, and matrix size = 256 x 256 was used. Two coronal slices were acquired, with a total scan
time of 6 s (Fig. 1). Participants were instructed to hold their breath as long as possible. For nine
volunteers, T2*-weighted data were acquired every 6 s for 1 min, repeated three times with 120 s rest
intervals. In one volunteer, a 90s breath-hold was tested (Fig. 3). Respiratory data were monitored via
a bellows system. Image processing: Pixelwise T2* maps were generated using an in-house Python
fitting script (mono-exponential function). Whole-kidney, cortex, and medulla ROls were drawn on
both kidneys, and mean T2* values were extracted. Image analysis: Percentage change was calculated
relative to the first breath-hold scan. Changes across the three trials were averaged, and linear
regression assessed T2* decline over time.

Results: One volunteer was excluded due to severe susceptibility artifact. All others managed at least
one 36s breath-hold. For nine subjects, whole-kidney T2* values declined during breath-hold in 8/9
participants. After 36s, average T2* reductions across repeated trials ranged from +1.36% to —7.8%.
Medullary responses were less consistent than those in cortex and whole kidney. Linear regression
revealed negative slopes in T2* across all ROIs, indicating decline. On average, whole-kidney T2*
decreased by 3.0% at 36s (Fig. 2). In the single subject performing 90 s breath-holds, all three trials
were successful. T2* values showed a sharp 27% reduction between ~36—90s, markedly greater than
in shorter protocols.

Discussion: Our findings confirm that renal T2* declines during breath-hold, reflecting progressive
deoxygenation. The linear reduction suggests breath-hold duration is a possible confounder for renal
BOLD MRI protocols using 30—40s acquisitions. The subject sustaining 90s breath-holds exhibited
continued T2* decline beyond one minute. This suggests activation of parasympathetic
autoregulation, potentially involving vasoconstriction and reduced renal blood flow/volume, both
important confounders in BOLD interpretation [5]. Thus, while breath-holding minimizes motion
artifacts, it also introduces physiological changes that complicate data interpretation. Protocols must
account for these factors to avoid overestimating renal oxygenation deficits.

Conclusions: Breath-holding significantly influences renal T2* during BOLD MRI. Longer holds (>60 s)
cause greater reductions, likely due to renal autoregulatory responses. Identifying the timing of this
activation may provide insights into impaired renal vasoreactivity, common in early diabetic kidney
disease. Since microvascular and macrovascular dysfunction occur early, these changes could serve as
early biomarkers for disease detection and monitoring.
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Fig. 3. Left: Top: averaged T2* values from whole-kidney ROls in both kidneys using long breath-hold
protocol. Middle: calculated T2* map (every 6 seconds). Bottom: respiration signal recorded during
the experiment using respiratory bellows. Right: Top: absolute renal T2* values over the three repeats
using the long breath-hold protocol. Bottom: Average signal from the three repeats, along with linear
fits for the intervals [0—36] seconds and [36—90] seconds.
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Introduction Hyperpolarised (HP) '®Xe MRI is a powerful tool for assessing pulmonary
function, and implementing it at lower magnetic field strengths could improve accessibility
and affordability. Low-field imaging offers several technical advantages, including longer
transverse relaxation times and a relatively field-independent signal-to-noise ratio [1,2],
making it an attractive option for wider clinical deployment. Dissolved-phase '>°Xe MRI offers
valuable metrics for pulmonary gas exchange but has not been explored between 0.2 T and
1.5 T. At lower fields, chemical exchange broadening of the red blood cell (RBC) and
membrane (M) peaks may hinder separation of their signals, and relaxation times remain
uncharacterised. We have simulated spectra at 0.5 T to assess peak broadening of RBC
and M resonances at 0.5 T and performed experiments to examine the field-dependence of
the relaxation and exchange of dissolved '*Xe, and search for a solution which models the
exchange dynamics of '>°Xe dissolved in blood.

Methods The NMR spectrum of HP '2°Xe dissolved in human blood at 0.5 T was simulated
by applying a two-compartment model of the Bloch-McConnell equations [3] using relaxation
and exchange rate constants measured at 1.5 T in previous experiments [4,5]. Spectroscopy
measurements were performed at 1.5 T and 3 T on samples of HP '°Xe dissolved
individually in olive oil, ethanol, chloroform and saline. Measurements were also taken at 1.5
T and 3 T of '®Xe dissolved in mixtures of two of these solvents. T,, T,*, and .5 (chemical
shift relative to '*Xe gas resonance) were calculated by fitting Lorentzian functions to the
data.

Results and Discussion The simulated and experimental spectra of '>Xe dissolved in
blood at 1.5 T (shown in Fig. 1A) had a root mean square error of 0.009, indicating close
agreement between the two. This implies the validity of applying Bloch-McConnell theory to
this scenario, and therefore of the simulated 0.5 T spectrum (for which there is no
experimental data to provide a comparison). Fig. 1B shows the simulated spectrum of '*Xe
dissolved in blood at 0.5 T, with Lorentzian fitting applied to each resonance. This suggests
that distinguishing RBC and M signals should be possible at 0.5 T. T,* relaxation times were
shortened from 2.75 ms to 2.57 ms in RBC and from 1.95 ms to 1.78 ms in M due to
chemical exchange broadening. It is worth noting that simulations did not account for the
field-dependence of T,*, so these values may be underestimations.

Measurements of T;, T,, and J4, for HP '**Xe dissolved in each of the solvents at 1.5 T and
3 T are shown in Table 1. As expected, T, increased with field strength while T,* decreased
in each case. T,* was consistently 2-3 times shorter at 3 T than at 1.5 T. Measured chemical
shifts were 3-5 ppm lower than the expected values [6]. The olive oil chemical shift was
observed to decrease by 5 ppm when mixed with ethanol, compared to on its own. T, and
T,* were both generally longer for olive oil and ethanol in the mixed solvent, compared to as
single solvents. The olive oil and chloroform mixture exhibited a single '*Xe resonance,
consistent with rapid chemical exchange due to the high miscibility of the two solvents. This
contrasts with the distinct resonances observed in the mixture of olive oil and ethanol.
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Fig. 1: (A) Comparison of the experimental and simulated absorption spectrum of HP **Xe dissolved
in blood at B, = 1.5 T. (B) Simulation of the same frequency spectrum at B, = 0.5 T, with Lorentzian
functions fitted to the RBC and Membrane resonances.

By=1.5T By=3T
Solvent
T,* b T,* b
(peak) T, (s) 2 gas T, (s) 2 gas
i (ms) (ppm) | ' (ms)  (ppm)
Olive Oil 14.5 39.0 192 28.1 16.6 193
Ethanol 13.8 53.9 162 43.2 18.3 162
Saline 117 84.9 192 - - 191
Chloroform 13.4 60.0 211 15.2 22.0 213
0O + Eth
12.0 45.7 187 35.0 19.4 187
(Olive Oil)
QEvEh 15.9 61.9 162 128 21.4 162
(Ethanol)
00O +Chl
(Olive Oil) 25.1 17.7 204
00 +Chl
- - - 25.1 17.7 204
(Chloroform)

Table 1. Measured relaxation times for "*Xe dissolved in single or mixed solvents at 1.5 Tand 3 T.
‘O0 + Eth’ is a mixed solvent of olive oil and ethanol. ‘OO + Chl is a mixed solvent of olive oil and
chloroform. -’ indicates that this data was not collected.

Conclusion & Future Work Simulations of the Bloch-McConnell equations indicate that
dissolved-phase 'Xe MRI at 0.5 T can resolve distinct RBC and M signals, enabling
quantification of pulmonary gas exchange metrics such as the RBC:M ratio. However,
experimental validation of the simulations is necessary. Measurements of dissolved '**Xe
relaxation times in different solvents demonstrate a strong dependence on magnetic field
strength. Our future in vitro blood experiments will aim to measure '*Xe relaxation times and
exchange rates at 0.5 T to evaluate the feasibility of low-field gas-exchange imaging.

References [1] Parra-Robles et al. Med. Phys 2005;32:221-229. [2] Durand et al. Magn. Reson.
Med. 2002;47(1):75-81. [3] McConnell J. Chem. Phys. 1958;28(3):430-431. [4] Norquay et al. Magn.
Reson. Med. 2015;74:303-311. [5] Bifone et al. Proc. Natl. Acad. Sci. USA 1996;93(23):12932-12936.
[6] Miller et al. Proc. Natl. Acad. Sci. USA 1981;78(8):4946-4949.
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Introduction: Non-invasive quantification of energy metabolism using 3P Magnetic Resonance
Spectroscopy (3!P-MRS) has high clinical potential. However, absolute quantification of phosphorus
metabolites requires saturation correction (as data are often acquired with short TR), which in turn
requires accurate B;* knowledge. The Bloch-Siegert method of B;* mapping has been successfully
applied in the human heart using 3D Cartesian-sampling of k-space (3D-CSI)[1]. However, long
acquisition times (e.g. 21 min for cardiac imaging)[2] prevent this method from being routinely used
in larger organs, or alongside already long 3!P-MRS experiments. Instead, accelerated k-space
sampling may facilitate significantly shorter scan times[3]. This work aimed to optimize Bloch-Siegert
B1* mapping using a 3D-concentric ring k-space trajectory (3D-CRT). As acceleration impacts SNR, the
effect of apodization-induced line broadening (applied to improve spectral fitting) and k-space
sampling density on B;* maps was investigated.

Methods: A uniform KH,PO,30mM phantom (30 L jerrycan, 43x26.5x26.5 mm?) was scanned in a 7T
scanner (Magnetom Plus, Siemens Healthineers) equipped with a 3'P whole-body birdcage transmit
and 16-channel receive array coil (Rapid Biomedical). B;* mapping utilized a Bloch-Siegert Fermi pulse
(To=8 ms, To= 4 ms, a= 0.1 ms, offsets= +1000Hz) for 2D-CSI and 3D-CRT acquisitions, with variations
to the scan time/SNR. ‘Short’ and ‘long’ scans were acquired for 2D-CSI (10 or 60 averages, 9:56 min
or 48:48 min respectively) and 3D-CRT (17 or 39 rings, 8:48 min or 48:28 min respectively). Additional
2D-CSl acquisition parameters included Tg=1's, Te= 2.3 ms, matrix= 12x12x1, FOV= 300x300x30 mm?3,
spectral samples= 2048, bandwidth= 8000 Hz. Additional 3D-CRT acquisition parameters included Tg=
1's, Te= 2 ms, matrix= 12x12x12, FOV= 300x300x170 (or 300x300x30 mm? for apodization linewidth
comparisons), spectral samples= 756, bandwidth= 2778 Hz. 3D-CRT data were reconstructed offline
using the non-uniform fast-Fourier transform toolbox with min-max Kaiser-Bessel kernel interpolation
and two-fold oversampling. Individual coil data were combined using WSVD[4], and apodized in the
time domain before spectral fitting using OXSA[5] (MATLAB R2024b, MathWorks). Apodization
linewidths of OHz, 10Hz, 20Hz, 30Hz and 40Hz were applied to ‘short’ scans when investigating the
effect of apodization-induced line broadening. All other comparisons used spectra apodized by 10Hz.
Voxels were excluded from analysis if they were outside the ROI, or had a voxelwise CoV >0.4, baseline
fitted linewidth >2000Hz (indicating failed spectral fitting), or SNR-weighted Cramér—Rao lower bound
(CRLB) >10°. Matched voxels were compared using a two-tailed paired t-test or repeated measures
ANOVA with Tukey’s multiple comparisons (>2 groups). Bias between 2D-CSI and 3D-CRT was
evaluated using Bland-Altman analysis (GraphPad Prism v10.2.2). Results are presented as mean+SD.

Results: Apodization-induced line broadening did not significantly alter B:*, producing stable 2D-CSI
values for apodization linewidths of OHz (3.8+1.3 uT), 10Hz (3.9+1.2 uT), 20Hz (3.8+1.3 uT), 30Hz
(3.8%1. 2 uT) and 40Hz (3.8+1.2 uT) (all p>0.05, Fig 1). Similarly, 3D-CRT B;* values were stable for OHz
(4.1+£1.3 uT), 10Hz (4.1+£1.3 uT), 20Hz (4.1+1.2 uT), 30Hz (4.1+1.3 uT), and 40Hz (4.1+1.3 uT) (all p>0.05,
Fig. 1). Importantly, all apodization linewidths significantly improved the CRLB of phase fitting for both
2D-CSl and 3D-CRT (all p<0.0001). Mean B;* of ‘short’ 2D-CSI (3.6£1.2 uT) and ‘short’ 3D-CRT (4.1£2.0
UT) did not significantly differ (p>0.05), with a bias of 0.4 uT (LoA -3.6 to 4.5 uT). However, a significant
difference was observed between ‘long’ 2D-CSI (3.6+0.9 uT) and ‘long’ 3D-CRT (3.0+1.3 uT) (p=0.0006),
with a bias of -0.6 uT (LoA -3.4 to 2.2 uT) (Fig. 2). Notably, no significant difference was seen between
‘long’ 2D-CSI (3.620.9 uT) and ‘short’ 3D-CRT (4.1+2.0 uT) (p<0.05), with a bias of 0.5 uT (LoA -3.4 to
4.4).
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Discussion: Bloch-Siegert B;* mapping is feasible using 3D-CRT, and can facilitate accelerated scanning.
This work demonstrates that apodization-induced line broadening can improve fitting confidence,
while not significantly altering B;* quantification in phantoms- data that supports its use in spectral
fitting and post-processing of B:* maps. Notably, ‘short’ 3D-CRT B1* values were comparable to ‘short’
and ‘long’ 2D-CSI scans, despite indicating a small bias to overestimate B;*. The observed difference
between ‘long’ 2D-CSI and ‘long’ 3D-CRT may be due to higher voxel variability (and associated lower
SNR) from 3D-CRT measurements, despite both methods producing visually homogenous results.
Future work aims to further optimise 3D-CRT SNR within clinically feasible scan times, and to explore
the relationship between 2D-CSI and 3D-CRT in vivo.

Conclusion: 3D-CRT Bloch-Siegert B:* mapping provides greater image coverage in scan times

comparable to single slice 2D-CSI. Future work aims to integrate this method into the Bloch-Siegert
Four Angle Saturation Transfer method, and for absolute quantification of phosphorus metabolites in
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Fig 1. B:* maps of matched voxels with different levels of apodization (0 40Hz) for 2D-CSI and 3D-CRT
acquisitions.
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Fig 2. B:* maps of matched voxels across conditions of ‘short’ (10 averages vs 17 rings) and ‘long’ scans (60
averages vs 39 rings) using 2D-CSI and 3D-CRT. Bland-Altman plots depict a small bias between Bi* mapping
techniques.
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Generating a Novel Digital Phantom for Simultaneous QSM and EPT
Philippa Sha?, Jierong Luo?, Patrick Fuchs?, Karin Shmueli!
!Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.
Zimec-Visionlab, Department of Physics, University of Antwerp, Antwerp, Belgium.

Introduction:

Quantitative susceptibility mapping (QSM) and electrical properties tomography (EPT) are two emerging MRI
techniques to non-invasively measure tissue electromagnetic properties. QSM uses the phase of the MRI signal to
reconstruct the underlying distribution of magnetic susceptibility (x) [1]. Phase-based EPT uses the transceive phase
(o) to estimate tissue electrical conductivity (o) [2].

QSM and EPT have each shown promise for various clinical applications [2-5]. Although typically performed
separately, simultaneous QSM and EPT has been shown to be feasible and beneficial, due to the complementary
information they provide [6,7]. While digital phantoms have been developed separately for QSM [8] and EPT [9],
none currently support the evaluation of both techniques. Therefore, we developed a novel digital brain phantom,
designed for the simultaneous application of QSM and EPT.

Methods:

Phantom construction: Multi-echo GRE magnitude and phase data were obtained from the QSM Challenge 2.0 [8],
with sequence parameters: 4 echoes, TE; = ATE =4 ms, resolution = 0.64 mm isotropic, FOV = 205 x 205 x 164 mm?,
Because phase extrapolation to TE=0 did not yield a meaningful transceive phase, we simulated ¢, by non-linear
registration of the ¢o data from the EPT Challenge phantom (SimA4Life; resolution = 1 mm isotropic, FOV = 256 x
256 x 160 mm? [9]) into the QSM Challenge anatomical space, using FLIRT [10,11] and FNIRT [12]. The registered ¢o
was added to the GRE phase in the complex domain according to ¢(t) = yAB TE + ¢,.

Segmentations of 10 regions of interest (ROIs) were obtained from the QSM Challenge phantom, and a
corresponding tissue segmentation was generated by grouping ROls into cerebrospinal fluid (CSF), grey matter (GM)
and white matter (WM). Ground truth susceptibility was taken directly from the QSM Challenge. Ground truth
conductivity was generated by assigning literature values to each tissue type (CSF =2.22 S/m, GM =0.69 S/m, WM
=0.41S/m) [13].

Validation: QSM reconstruction was performed based on consensus recommendations [14]: SEGUE was used for
phase unwrapping [15], PDF for background field removal [16], and FSL BET for masking [17] with additional noise-
based thresholding [18]. Four of the most popular and robust dipole inversion methods were assessed: iteratively
regularised Tikhonov (iterTik) [19], FANSI nonlinear TGV (nITGV) [20], weak harmonics (WH-QSM) [21], and
automatically regularised nonlinear dipole inversion (autoNDI) [22].

EPT was performed using an optimised in-house pipeline [23]. Conductivity was reconstructed via the surface
integral of the ¢o gradient, using 3D spherical kernels to perform differentiation and integration, each with
optimised radii. Magnitude- and segmentation-based kernel
weighting was applied for noise suppression and edge
preservation [23].

QSM and EPT reconstructions were assessed by calculating the
mean absolute error (MAE) relative to the ground truth. QSM
accuracy was evaluated using the mean susceptibility per ROL.
EPT accuracy was assessed using the median conductivity per
tissue type, as well as percentage of non-physical values (<0
S/m and >10 S/m), which were considered erroneous.

Results:

Fig. 1 shows the complete phantom, including multi-echo
magnitude and phase, segmentations, and ground truth maps.

QSM reconstructions using all four dipole inversion methods
are shown in Fig. 2, alongside MAE values. Table 1 lists mean
ROI x values for all methods vs the ground truth. IterTik yielded
the lowest overall MAE and produced x values closest to the
ground truth in 6 of 10 ROls.

-0.15 ppm 015 0 S/m 25

Fig. 1: Complete phantom dataset. (A) Final echo of
multi-echo magnitude. (B) Final echo of multi-echo
phase (wrapped). (C) Tissue segmentation. (D) ROI
segmentation. (E) Ground truth susceptibility map.
(F) Ground truth conductivity map.
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Fig. 3 compares conductivity maps reconstructed from ¢ extrapolated from the QSM Challenge data, vs our
simulated ¢, using identical parameters and optimal kernel radii (15 mm for both differentiation and integration).
Our simulation produced median o values closely matching those in the literature: 2.16 S/m (CSF), 0.69 S/m (GM),
and 0.50 S/m (WM).

iterTik nITGV WH-QSM autoNDI GT

0.15

ppm

-0.15

5] Mean y (ppm)
iterTik nTGV ~ WH-QSM  autoNDI GT
Caudate 0.049 0.059 0.075 0.057 0.044 5%
Globus Pallidus 0.134 0.228 0.201 0.152 0.131
Putamen 0.036 0.057 0.051 0038 0.038
Red Nucleus 0.129 0.157 0.166 0.154 0.100
Dentate Nucleus 0.099 0.216 0.232 0.115 0.152 S/
Siﬂ?ﬁ‘;’;ﬂ;c’qﬂzg‘w 0.111 0.145 0.146 0.121 0.111
Thalamus 0.023 0.039 0.009 0.031 0.020 "
WM -0.025 -0.032 -0.027 -0.028 0.030
GM 0.015 0.014 0.012 0.014 0.020
CSF 0.012 0.017 0.022 0.013 0.019
Table 1: Mean ¥ values per ROI using each QSM reconstruction Fig. 3: Conductivity maps generating using (A) original
method on phantom, compared to GT. QSM Challenge data vs (B) our simulation.

Discussion: Our simulated phantom produced high-quality susceptibility and conductivity maps, with minimal
errors. A major limitation in the original QSM Challenge data was its inability to provide a meaningful ¢o, rendering
it unsuitable for EPT, as highlighted in Fig. 3A. Our simulation approach overcomes this issue, while maintaining
QSM compatibility. One limitation, however, is that although our ¢o simulation is noiseless, the multi-echo QSM
Challenge data has an SNR of approximately 160, meaning a totally noiseless version of the phantom is not currently
available. Future work may expand the phantom to include artefacts or pathology such as calcifications, to enable
optimisation of QSM and EPT for clinical applications.

Conclusions: We generated a dual-purpose QSM+EPT digital phantom, enabling optimisation of both techniques in
a unified framework. This will facilitate joint investigation of simultaneous susceptibility and conductivity mapping
in future clinical studies.
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TAsk-DRiven Experimental Design for Protocol Optimization of Ultra-high Gradient
Strength Diffusion-weighted MRI Measurements
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Introduction

This study focuses on optimizing diffusion MRI (dMRI) acquisition protocols to improve image quality,
reduce scan time, and enhance sensitivity to tissue microstructure. Traditional methods achieve this
by minimizing the Cramer-Rao Lower Bound (CRLB) [1], optimizing angular coverage of b-shells [2], or
applying data interpolation [3]. More recent machine learning approaches, such as TADRED (Task-
Driven Experimental Design) [4] and physics-informed networks [5], offer greater flexibility across
different dMRI models. TADRED combines a subsampling network, which selects the most informative
measurements, with a task network to perform the desired analysis, thereby improving acquisition
efficiency. This study evaluates the TADRED-based subsampling method against a naive approach that
focuses solely on maximizing angular coverage within each shell.

Methods

Data Acquisition, Processing and Fitting

Multi-shell dMRI data [6] were acquired on an ultra-strong gradient system with seven b-shells (up to
b = 6 ms/um?), 266 directions (including 13 b=0), and acquisition parameters TE=80ms, TR=5s, 1.8
mm slice thickness, and 120 x 120 mm? FOV. Direction counts scaled with b-values, and b=0 images
were interleaved for correction purposes. Data preprocessing included MP-PCA denoising [7-10],
correction for drift and outliers using SOLID [11], distortion correction with FSLs topup [12,13] and
eddy [14], gradient non-linearity correction in MATLAB, and Gibbs ringing removal via MRtrix3 [15].
For TADRED, SANDI model parameter maps were generated from the full dataset using a random forest
regression via the SANDI MATLAB Toolbox [16].

Data Subsampling and Analysis

Two subsampling methods were used to reduce dMRI data: uniform subsampling and the TADRED
framework [4]. Uniform subsampling reduced data by 10%, 30%, and 50% per b-shell while maintaining
uniform angular distribution. In contrast, TADRED used the full dMRI data, SANDI maps, and acquisition
parameters as input to train subsampling and task networks (84% training, 8% validation, 8% testing).
TADRED then generated optimized subsampled datasets without relying on the original sampling
pattern. SANDI parameter maps were computed for both subsampled datasets and compared to full-
data maps to assess accuracy and effectiveness.

Results

Fig. 1 shows the subsampled diffusion directions across several b-shells for both uniform and TADRED
approaches. Notably, TADRED removed more directions at the intermediate b-shell (b = 2.4 ms/um?).
Fig. 2 compares SANDI model parameter maps derived from the uniform and TADRED-subsampled
datasets, illustrating variations between the two approaches.
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Discussion

TADRED showed less than 20% error in brain tissue, with higher errors mainly in CSF regions. Across
all subsampling rates, it outperformed uniform subsampling in SANDI parameter accuracy (Fig. 3). At
50% subsampling, TADRED showed slightly higher errors in fieurite and Rsoma COmpared to uniform
subsampling, but these errors were largely confined to CSF voxels. This study focused solely on
TADRED's subsampling network for protocol optimization, using the same model fitting for both
methods. Future work will incorporate the task network to directly estimate SANDI parameters.

Conclusion
TADRED outperformed uniform subsampling in estimating SANDI parameters, showing lower error
rates and promising potential for efficient dMRI protocol optimization in future clinical and research
applications.
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Figure 2: Difference maps of SANDI model parameters are
shown for all subsampling ratios and both subsampling
approaches. These maps were generated by comparing the
Figure 1: Diffusion directions shown for selected b- SANDI fits from the subsampled datasets to the ground
shells after subsampling using manual uniform truth maps. Overall, the TADRED-based subsampling yields
sampling (black squares) and TADRED (red crosses) lower errors in the difference maps compared to uniform
at different subsampling levels. subsampling.
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Improving transmit magnetic field homogeneity using a neurovascular head and neck coil
with tailored parallel transmission pulses

Chia-Yin Wu?!, Divya Baskaran?!, Keith Muir?, Natasha E. Fullerton’?, Shajan Gunamony'?, David A.
Porter?
!Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
’Department of Neuroradiology, Institute of Neuroscience, NHS Greater Glasgow and Clyde, Glasgow,
UK
3MR CoilTech Limited, Glasgow, UK

Introduction: A 7T neurovascular head-and-neck coil (NVHN)! provides coverage of the brain and
cervical spine regions enabling various neurovascular imaging techniques at ultra-high field (UHF). UHF
systems significantly improve SNR and parallel-imaging but capabilities are challenged by non-uniform
transmit magnetic fields (B;*). Parallel transmission (pTx) can be used to mitigate the B;* problem?.
With a single dedicated NVHN coil (Fig. 1), tailored pTx pulse designs can remain more streamlined
without the need of coordinating multiple coils imaging different anatomical regions. Here we
demonstrate an initial evaluation using a NVHN coil with tailored pTx pulses to improve signal
uniformity across the brain and neck region in vivo.

Methods: All data were collected on a 7T Terra system (Siemens Healthineers, Germany) using a
custom-built 8TxRx56Rx NVHN coil. Prior to the scan, the healthy volunteer provided written informed
consent of the project ethics approved by the local ethics committee. Absolute (SA2RAGE®) and
relative B;* maps (resolution 4x4x4mm?) were acquired to design tailored pTx pulses. Non-selective
tailored pTx pulses (8 kr-points?, duration=1.66ms) were designed using the MLS spatial-domain-
method**. 3D GRE datasets were acquired with 5° and 10° flip-angle pulses. Acquisitions were made
using the standard non-selective excitation pulse in the circularly polarised (CP) mode and with pTx
pulses. Combined with the SA2RAGE> maps, the ratio between the CP and pTx images was used to
construct flip-angle maps produced by each pulse.

Absolute B,* maps [T/V]
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Fig. 1. Left: 8TxRx56Rx Neurovascular Head-and-Neck (NVHN) coil (Image from [1]). Right: Transmit
sensitivity maps measured for each of the 8Tx-channels.

Results and Discussion: Significant improvements in excitation fidelity was achieved in the peripheral
regions of the head extending down to the upper neck region in pTx-mode compared to CP-mode. The
pTx pulses produced superior excitation uniformity with a NRMSE of 0.23 in comparison to 0.45 in the
brain using CP-mode for 5° flip-angle. Similarly, a NRMSE of 0.26 was achieved for 10° flip-angle using
pTX.

To put this into perspective 3D T, -weighted images were collected to visually assess uniformity. Figure
3 show areas of improved signal uniformity in cerebellum, peripheral regions of the brain and central
neck region when using pTx pulses compared to standard non-selective pulses.
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Fig. 2. Comparison of flip-angle maps for the use of 5° pulse in CP-mode, 5° and 10° kr-points pulse
in pTx-mode.

CP-mode

0
Fig. 3. T,*-weighted images acquired in CP-mode (top) and pTx-mode (bottom). Note: measured
images have the receive sensitivity bias superimposed.

Conclusions: Conventional tailored pTx pulses can improve excitation fidelity across both brain and
neck regions. This shows promising potential in incorporating pTx pulses in more advanced MRI
techniques with targeted interest in both the brain and neck regions.
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Altered Resting State Ventrolateral Periaqueductal Grey Functional Connectivity in Sickle
Cell Anaemia
Mitchel Lee?, Fenella Kirkham?, Karin Shmueli!
!Medical Physics and Biomedical Engineering, University College London, London, UK
2Developmental Neurosciences, Institute of Child Health, University College London, London, UK

Introduction: Sickle cell anaemia (SCA) is a genetic blood disorder associated with episodes of acute
pain and a substantial burden of chronic pain, potentially relating to neurological dysfunction [1].
Abnormal brain activity and functional connectivity have been widely reported [1]. Here, we
investigated SCA-related changes to the connectivity patterns of a major pain-processing brainstem
structure, the periaqueductal grey (PAG). The
PAG comprises several functionally distinct

subdivisions, with the lateral (IPAG) and e
dorsolateral (dIPAG) regions associated with b Ventrolateral
active coping and non-opioid analgesia, and the ;

ventrolateral PAG (vIPAG) linked to passive : » Left Lateral

coping and opioid-mediated pain control [2].
The relationship between connectivity changes
in these regions and self-reported pain scores
was also considered.
Methods: 36 SCA patients (aged 8-64 years,
mean age 23 years, 15 male) and 16 healthy
controls (HCs, aged 10-64 years, mean age 18
years, 12 male), recruited for the Prevention of
Morbidity in Sickle Cell Anaemia (POMS) study [3], were imaged at 3T with a 6.2 minute single-echo
EPI resting-state MRl scan with parameters: TR=1.24 s, TE = 26 ms, 2.5 x 2.5 x 3 mm resolution, matrix
80 x 80 x 40, and a T1-weighted structural MPRAGE acquisition with 1 mm isotropic resolution.
Functional and structural data were pre-processed with a standard pipeline including geometric
distortion correction, slice timing correction,
outlier detection, SPM12 unified segmentation
and MNI-space normalisation, 8-mm FWHM
Gaussian smoothing, and denoising, all
implemented in the CONN toolbox using
default parameters [4]. PAG seeds were
created as 2-mm radius spherical seeds on the
MNI space structural template as per previous
literature [5]. These defined the IPAG, dIPAG
and VvIPAG for both hemispheres (Fig. 1). The
bilateral IPAG, dIPAG and vIPAG seeds were
used to compute whole-brain connectivity
maps (Fisher-transformed correlation of each
seed’s time series with every voxel signal
timecourse). Group differences between SCA
Figure 2: Clusters showing significantly higher patients and controls were determined at the
functional connectivity with the bilateral cluster level (voxel threshold p < 0.001, cluster p-FDR <
vIPAG in SCA patients compared to controls. 0.05) using Random Field Theory [4] with age and sex
regressed out as nuisance covariates. Clusters showing
significant changes relative to controls were then regressed against pain scores derived from a two-
week pain diary completed before scanning, which were available for 18 of the SCA patients [6].
Results: PAG seeds are shown in Figure 1. The IPAG and dIPAG did not show any significant
connectivity differences between SCA patients and controls. The vIPAG showed 4 clusters of
significantly increased connectivity in SCA patients, located primarily in the bilateral cerebellum and

Figure 1: PAG seeds shown overlaid on coronal and
sagittal slices of the MNI space T1w template, with
zoomed views below each slice.




putamen (Figure 2 and Table 1). No relationship was found between pain scores and connectivity in
any of these clusters (Figure 3).

Discussion: Our results show some consistency | Cluster | Extent (voxels) | p-FDR Region(s)
with a previous PAG connectivity study in SCA, Cerebellum VI L (44%),
which also found elevated connectivity to the ! 448 0.00014 Crus | L (36%)
cerebellum in SCA patients with chronic pain 2 356 0.00039 Putamen R (73%)
compared to patients without chronic pain and
healthy controls [7]. Increased putamen 3 148 0.02107 Putamen L (98%)
connectivity to other brain regions has also been

) ) 4 148 0.02107 | Cerebellum VIR (85%)
observed in SCA [8]. We previously reported

widespread increases in connectivity in this cohort  Table 1: Cluster extent, FDR-corrected p-value and
between several large-scale brain networks [9],  main regions (with % of cluster within that region)
and these results may be linked to that forthe significant vIPAG connectivity clusters.
hyperconnectivity pattern. The putamen is widely

implicated in pain disorders [10]. Interactions between the vIPAG and putamen have been linked to
the transmission of pain-expectancy signals, with the putamen relaying expected pain-relief signals to
the PAG, and the PAG issuing an ascending prediction-error signal whenever incoming nociceptive
input violates those expectations [11]. In SCA, increased vIPAG-putamen connectivity may therefore

reflect a maladaptive loop of pain anticipation Chister 1 Cluster 2

reinforcement - a mechanism that may drive r=0.0L 9= 0.96 . r=°-18"’=:’-47

central sensitisation [12]. Increased connectivity g ©5¢ 4 g 051 4

between the cerebellum and vIPAG may reflect £ %% L - R -

similar processes. The PAG, particularly the vIPAG, 5 :: * e o, E Zz —.".’"‘-'"T’:’
. .

is highly connected to the cerebellum ([13], . . . ‘e

0.1 . 2 2 S 0.1+ % - : gt
. . . P 0.00 0.05 0.10 0.15 -0.06 0.00 0.06 0.12 0.18
including to cerebellar nuclei such as the fastigial . »
| d this specific pathway may be connectivity connectivity
nucleus, an P p Y y Cluster 3 Cluster 4

involved in conditioning fear and defensive states r=-0.17, p = 0.50 r=-0.17, p = 0.51

(e.g. anxiety) [14]. This is again highly related to o 05 & ‘ o 05° . ‘

chronic pain mechanisms [15]. The lack of relation 30-4' . . = §°-4' N ——at”

to pain scores likely reflects insufficient power £ °'3'\_.‘\.. £ ‘”H

and challenges in identifying neural correlates of & %%’ A |

self-reported pain, rather than implying the pain- . -0.08 000 o008 ois  °" 0bo 008 o0is 024
Connectivity Connectivity

irrelevance of these connectivity changes. SCA
can lead to pain due to a diverse range of causes, with potentially
distinct neural correlates. Stratifying patients by pain subtype or
specific conditions, e.g. pain secondary to hip necrosis [16], could
reveal specific abnormalities.

Conclusions: Sickle cell anaemia patients showed increased ventrolateral periaqueductal grey
connectivity to the putamen and cerebellum, consistent with abnormal pain and emotion-related
processing. These changes may reflect mechanisms of pain anticipation or sensitisation, though no
associations with pain scores were found, highlighting the need for further investigation.
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Introduction: Accurate segmentation of white matter lesions in multiple sclerosis (MS) is critical for both clinical trials
and research. Lesion counts and volumes derived from MRI scans serve as surrogate markers of disease burden [1]
and are essential for evaluating treatment efficacy and tracking disease progression [2]. Manual segmentation
remains the gold standard but is time consuming, prone to human error, and poorly scalable for large datasets. These
challenges have motivated the development of automated methods, many of which leverage Al to improve speed
and consistency [3]. However, few of these tools have been systematically validated against expert segmentations in
MS populations. In this study we compare two tools available in FreeSurfer: Samseg [4] and WMH-SynthSeg [5], to
evaluate their performance relative to manual lesion outlines, in order to assess their reliability for broader use in
both research and clinical applications. We hypothesized that significant correlations would be observed between
manual and each automated segmentation method, reflecting their ability to approximate expert annotations.
Methods: Thirteen patients with clinically diagnosed multiple sclerosis (mean age: 39.5 + 8.5 years; 8 females, 5
males) have been included so far in the study. All participants had an Expanded Disability Status Scale (EDSS) less
than 4, indicating mild to moderate disability. Functional performance was assessed via the MS Functional Composite
(MSFC) score incorporating the 25 foot walk test, 9 Hole Peg Test, and Symbol Digit Modality Test across participants,
reflecting average performance on motor and cognitive tests. All participants underwent scanning on a 3T Siemens
Connectom system, with 3D T2w images and T1w MPRAGE sequences acquired as part of the acquisition protocol.
Manual lesion segmentation was performed on the T2w images using 3D Slicer [8] referencing MPRAGE scans to
improve boundary confidence. Two automated segmentation tools within FreeSurfer were evaluated: (1) Samseg (as
implemented in Freesurfer v7.4.1), applied to T2-weighted inputs with hyperintensity constraints relative to CSF[4]
and (2) WMH-SynthSeg (Freesurfer development version), applied to T2w images with the -save_lesion_probabilities
option [5]. Manual and automated binary lesion masks were used to compute lesion volumes in mm? using FSL [6]
and analysed using a custom script in MATLAB. Agreement between segmentation methods was assessed using
Pearson’s correlation, repeated-measures ANOVA, and Bland-Altman plots.
Results: The mean lesion volume was, respectively, 3121.68mm?3 (SD = 4911.81), 4286.57mm?3(SD = 6390.22) and
5887.8 mm? (SD = 3354.47) for manual, Samseg, and WMH-Synthseg. Samseg showed a strong correlation with
manual segmentation (r = 0.88, p < 0.001), while WMH-SynthSeg showed a statistically significant correlation with
Samseg (r = 0.65, p = 0.015), but was not correlated with manual segmentation r = 0.40, p = 0.18) (Figure 1). Two
participants displayed outlying values with high lesion volumes on both manual and automated tools. After their
exclusion, the correlations decreased substantially (e.g., Samseg—Manual r = 0.27, p = 0.42), indicating these cases
strongly influenced the observed associations. Bland-Altman plots (Figure 2) revealed good visual agreement
between manual and Samseg, and wider variability for WMH-SynthSeg. A consistent positive bias was observed
between Samseg and WMH-SynthSeg, suggesting systematic overestimation of lesion volume by WMH-SynthSeg.
In contrast, repeated measures ANOVA comparing lesion volumes across the three methods did not reveal
significant differences (F(2,24) = 2.67, p = 0.089), indicating no statistically confirmed agreement at the group level.

G-
Figure 1. Scatterplots showing Pearson correlations between manual, Samseg, and WMH-SynthSeg lesion.
Each panel demonstrates the relationship between three of the segmentation methods. Gray line represents the correlation line.
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Figure 2. Bland-Altman plots comparing lesion volume agreement between manual, Samseg, and WMH-SynthSeg segmentations.
Each panel demonstrates the agreement between a pair of the three segmentation methods. The solid line represents the mean difference; dashed lines indicate the 95% limits of
agreement.

Discussion: This study assessed the agreement between manual lesion segmentation and two fully automated
FreeSurfer pipelines Samseg [4] and WMH-SynthSeg [5]when applied to T2-weighted images. Both tools initially
showed moderate to strong correlations with manual volumes, but this was heavily influenced by two participants
with substantially higher lesion loads. These cases reflected true biological variability rather than segmentation error.
Once excluded, correlation values dropped indicating that the observed correlations were not statistically significant
(e.g., Samseg—Manual: r = 0.27, p = 0.42). These findings were mirrored in the Bland-Altman analysis, which showed
relatively narrow limits of agreement between Samseg and manual methods, and wider variability for WMH-
SynthSeg. A clear positive bias was observed between Samseg and WMH-SynthSeg, indicating a tendency for WMH-
SynthSeg to overestimate lesion volumes. Notably, direct comparison of lesion volumes revealed large absolute
differences in several cases. For example, in one participant, Samseg estimated 805 mm?3 of lesion volume, whereas
WMH-SynthSeg returned 4511 mm? a more than fivefold difference. This pattern was observed across multiple
patients, particularly in those with low lesion burden, and helps explain the observed bias and weakened agreement
statistics. Visual review suggests that in a few cases this was explained by non-lesion structures likely ventricular
spaces or periventricular regions being misclassified as lesions, particularly by WMH-SynthSeg. This results is
consistent with findings from low field and clinical imaging studies that highlight inconsistencies in WMH
guantification by automated tools across heterogeneous datasets [7]. The main limitation of this study is its small
sample size (N = 13), which restricts generalizability and limits the statistical power of agreement metrics. Future
studies should incorporate larger cohorts with a broader range of lesion loads, and consider integrating additional
contrasts to support more robust multi-modal segmentation. Manual quality control and consensus ground truths
will remain essential for validating segmentation performance in both clinical and research contexts. The lesion
probability maps provided by WMH-Synthseg could also be used to further refine the lesion maps.

Acknowledgment: This work was supported by the UKRI Future Leaders Fellowship (MR/T020296/2) and the Hodge

Promising Leads Grant, Hodge Center for Translational Neuroscience.

References

[1] Hemond CC, Bakshi R. Magnetic Resonance Imaging in Multiple Sclerosis. Cold Spring Harb Perspect Med. 2018 May

1;8(5):a028969. doi: 10.1101/cshperspect.a028969

[2]Garcia-Lorenzo D, Francis S, Narayanan S, Arnold DL, Collins DL. Review of automatic segmentation methods of multiple

sclerosis white matter lesions on conventional magnetic resonance imaging. Med Image Anal. 2013;17(1):1-18.

[3] Lladé X, Oliver A, Cabezas M, Freixenet J, Vilanova JC, Quiles A, Valls L, Ramid-Torrenta L. Segmentation of multiple sclerosis
lesions in brain MRI: A review of automated approaches. Inf Sci (Ny).

[4] 2012;186(1):164-185. MS lesions: A Contrast-Adaptive Method for Simultaneous Whole-Brain and Lesion Segmentation in
Multiple Sclerosis. S. Cerri, O. Puonti, D.S. Meier, J. Wuerfel, M. Miihlau, H.R. Siebner, K. Van Leemput. Neurolmage, 225,
117471, 2021.

[5] Quantifying white matter hyperintensity and brain volumes in heterogeneous clinical and low-field portable MRI. Laso P, Cerri
S, Sorby-Adams A, Guo J, Matteen F, Goebl P, Wu J, Liu P, Li H, Young SI, Billot B, Puonti O, Sze G, Payabavash S, DeHavenon A,
Sheth KN, Rosen MS, Kirsch J, Strisciuglio N, Wolterink JM, Eshaghi A, Barkhof F, Kimberly WT, and Iglesias JE. Proceedings of
ISBI 2024 press)

[6] S.M. Smith, M. Jenkinson, M.\W. Woolrich, C.F. Beckmann, T.E.J. Behrens, H. Johansen-Berg, P.R. Bannister, M. De Luca, .

Drobnjak, D.E. Flitney, R. Niazy, J. Saunders, J. Vickers, Y. Zhang, N. De Stefano, J.M. Brady, and P.M. Matthews. Advances in

functional and structural MR image analysis and implementation as FSL. Neurolmage, 23(S1):208-19, 2004

[7] P. Laso et al., "Quantifying White Matter Hyperintensity and Brain Volumes in Heterogeneous Clinical and Low-Field Portable

MRI," 2024 IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, 2024, pp. 1-5,

https://doi.org/10.48550/arXiv.2312.05119

[8] Kikinis R, et al. 3D Slicer: a platform for subject-specific image analysis. Intraoperating Imaging and Image-Guided Therapy,

Ferenc A. Jolesz, Editor 3(19). 2014:277-89.




Evolution of White Matter Hyperintensities and the impact of acute ischaemic Stroke

Claire Holland'?, Hamied Haroon?, Sarah Al-Bachari?, Matthew Gittins®, Stuart M Allan*?, Laura
Parkes?, Craig J Smith%%*

1Faculty of Biology, Medicine and Health, University of Manchester (UoM)

2Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Trust, UoM

3 Faculty of Brain Sciences, University College London

*Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust

Email: Claire.holland-3@manchester.ac.uk

Introduction: White matter hyperintensities (WMH) — neuroimaging biomarkers of white matter
(WM) damage and cerebral small vessel disease (cSVD) — are associated with increased risk of stroke
and cognitive impairment[1]. However, longitudinal studies into the association of acute ischaemic
stroke (AIS) on this relationship are limited[2][3]. This preliminary analysis investigates the evolution
of WMH in cerebrovascular disease, the impact of stroke, and the association with global cognitive
impairment.

Methods: Study Participants: Patients with AIS underwent cognitive assessment at 6-, 18- and 30-
months post-stroke, and structural MRI (T1w and FLAIR) at 6- and 30-months post-stroke. Controls,
matched for cerebrovascular risk factors but without AIS, completed parallel cognitive and MRI
assessments. Automated WMH_Segmentation was via the Enigma-PD-WML pipeline [4], which
integrates FSL (version 6.0.7.13;[5]) and U-Net[6] to analyse co-registered T1lw and FLAIR images
acquired from the same scanning session. WMHs were further segmented into periventricular WMH
(PVWMH) and deep WMH (DWMH) based on distance from the lateral ventricles (PVWMH: <10 mm;
DWMH: > 10 mm). All available MRI scans (T1w and FLAIR at 6- and 30-months) from both cohorts
were processed through this pipeline. Output images (T1w, FLAIR, and binary lesion masks) were
available in both native and standard MNI152 1mm space (linear and non-linear registration). Total
Brain Volume (TBV) was estimated using GM, WM, and CSF probability maps from Enigma-PD-WML.
WMH volumes were calculated from binary lesion masks in native (T1) space and are presented as
percentage of TBV (% TBV). Global cognitive performance was assessed using the Montreal Cognitive
Assessment (MoCA). Participants were given standardised instructions and different versions were
used each follow-up (6-month, v7.2; 18-month, v7.3 alternate version; 30-month, v7.2 alternate
version) to avoid recollection bias. Statistical Analysis: (1) DWMH, PVWMH, and total WMH volumes
were calculated for each participant at each timepoint. Mann Whitney U tests were performed to
determine groupwise differences in WMH burden and spatial distribution. (2) WMH volume at 6-
months and change in MoCA score from 6- to 30-months were assessed using Spearman correlation.
(3) Evaluation of changes in lesion volume from 6- to 30-months was determined using Mann Whitney
U and paired t-tests.

Preliminary Results and Discussion: Study participants: Presently, 58 participants with AIS (mean age
64.4 years +9.2) have undergone 6-month cognitive assessment and MRI; of these, 12 have completed
30-month follow-up. Sixteen Controls (mean age 65.4 years + 8.0) have undergone cognitive
assessments and MRI. Recruitment and follow-up are ongoing. WMH volume (6-months): Median
total WMH volume did not differ significantly between the cohorts (p = 0.2; Stroke: 0.280% TBV;
Control: 0.180% TBV) (Figure 1). However, the difference in the distribution of total WMH volumes
between the cohorts was significant (p = 0.02) (Figure 2). A more even distribution across a range of
WMH volumes was observed in the Stroke cohort while the majority of total WMH volumes in the
Controls (62.5%) were within the 0.10 < x < 0.20 range. It is possible that this difference in distribution
is due to differences in lesion progression, underlying pathophysiology, or variations in the index
stroke themselves. Regional WMH volume: A significant difference was found in DWMH volume
between the cohorts (p = 0.04) with the median burden in Stroke being two-fold higher than in




Controls (0.030-5.640% TBV vs 0.040-2.570% TBV). A strong positive correlation was found between
PVWMH and DWMH volumes within the Stroke cohort (r = 0.7604, p < 0.0001; Spearman Correlation)
but not in the Controls (r = 0.042, p = 0.876). All control participants exhibited DWMH, even at low
total WMH burdens. This is unexpected given the conventional model of cSVD progression, i.e.,
DWMH arises only in more advanced disease[7]. WMH Volume vs MoCA: Total and regional WMH
volumes (6-months) did not correlate with changes in MoCA score from 6-to 30-months (Total WMH:
r=0.63, p=0.8;, PYWMH: r = 0.06 p = 0.8; DWMH: r = 0.17; p = 0.6). Future analyses will explore
specific cognitive domains more closely linked to WM pathology. Evolution of WMH: WMH volume
did not increase significantly from 6- to 30-months in the Stroke cohort (0.230% TBV to 0.290% TBV;
p = 0.7). However, small but significant changes at an individual level were observed (p = 0.04). 3D-
lesion maps show evolution and regression of specific WM lesions over time (Figure 3).
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Figure 1: Total WMH Volume at 6-months. Median and 4

IQR indicated. Total WMH given as percentage of total brain

volume (% TBV) to normalise for individual differences in  Figure 3: Section of a single participant 3D-lesion map of

TBV. Y-axis plotted on log,gscale. longitudinal WMH evolution. Cyan: 6-months. Magenta: 30-
months. Red: Overlap between 6- and 30-months. Grey: Brain
template. Non-linear registration to MNI152 1mm space.

Conclusions: Total WMH burden did not significantly differ between cohorts, but DWMH burden was
significantly higher in Stroke patients. WMH burden post-stroke showed significant individual
variation over time. 3D-lesion maps evidence progression and regression of specific lesions over time.
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Introduction: Blood-brain barrier (BBB) dysfunction may contribute to cognitive decline following
stroke but is not well characterised chronically. Dynamic-contrast enhanced (DCE)-MRI involves
tracking T;-weighted signal changes from injected contrast agent which only extravasates where the
BBB is disrupted. Mathematical modelling estimates parameters relating to blood vessel permeability,
the contrast agent volume transfer constant (K""), and the volume of tracer leakage spaces, such as
the blood plasma volume fraction (v,). Post-stroke dementia risk is biphasic, with an initial steep
increase ending at ~6 months, followed by more gradual but longer-term risk [1]. Here, we use DCE-
MRI to characterise patterns of BBB permeability at 6 months after stroke, a time-point marking the
transition to chronic post-stroke dementia risk.

Methods: Participants — 54 ischaemic stroke survivors and 8 age/risk matched controls underwent
DCE-MRI at 6 months post-stroke (Table 1). MRI Acquisition — Data were acquired on a Philips Elition
3T scanner with a 32-channel head coil. A dynamic series of 157 3D-T;-FFE images were acquired
with a spiral k-space read-out (stack-of-spirals, 10 interleaves), 12° flip-angle, TR/TE = 10.6/0.8ms,
spatial resolution = 1.5x1.5x2mm?, temporal resolution = 7.6s, and an acquisition time of 20
minutes. A T,-weighted FLAIR and structural T;-weighted image were also acquired. DCE-MRI
Analysis — An Extended Tofts [2], Patlak [3], and intravascular [4] model of contrast agent leakage
with an input function derived from a region drawn in the sagittal sinus were fit to the data and
voxel-wise tracer kinetic model selection [5] used to map K" and v, across the brain. Region of
Interest Analysis — The acute stroke lesion was delineated manually from clinical DWI acquired <14
days since onset. This was dilated by 1cm to define the peri-lesion tissue. FLAIR hyperintensities and
normal-appearing white matter (NAWM) were delineated from the 6-month structural images.
Median K" and v, were extracted from each region. Statistical Analysis — Wilcoxon tests were used
for paired comparisons, Mann-Whitney tests were used to test differences between groups.
Spearman’s rank tests were used to assess for correlations with infarct volume, stroke severity
(NIHSS), and cognition (MoCA). All tests were Bonferroni corrected (P<0.008).

Table 1. Summary of the cohort.

Measure Stroke Group (N = 54) Control Group (N = 8)
Age (years) 63.5 (13, 47 — 84) 68.5 (10, 56 — 71)
Median (IQR, Range)

Sex (Female) 10 (19%) 2 (25%)

N (%)

NIHSS 3(4,0-15) -

Median (IQR, Range)

Infarct volume (mL) 2.4(11.4,0.1-52.5) -

Median (IQR, Range)

MoCA Score (at scan) 27 (3,20-30) 25(4,19-29)
Median (IQR, Range)

Results: High K" was observed in and around the old stroke lesion of some participants (Fig. 1),
though spatial patterns varied across the group. K'™" was significantly elevated in FLAIR
hyperintensities, the old infarct lesion, and peri-lesion tissue regions compared to the NAWM within
individuals and compared to controls (Fig. 2). The peri-lesion region also had a significantly greater v,



than the normal-appearing white matter of both stroke survivors and controls. K" in the peri-lesion
was correlated with infarct volume (r=0.39, P=0.004), but not acute stroke severity (NIHSS) or
cognition (MoCA) at the time of the DCE-MRI scan. No significant differences in K" or v, were found
when comparing the normal-appearing tissue of stroke survivors to that of controls.
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Fig. 1. Example images from two stroke survivors (a — b) and a control participant (c).
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Fig. 2. (a) Violin plots of the average K" in the controls (blue) and stroke (red) groups. (b — c) Paired
differences in average K" (b) and v, (c) between the NAWM and the peri-lesion.

Discussion and conclusion: We demonstrate persistent BBB dysfunction in stroke survivors at 6
months after onset, notably immediately surrounding the old infarct. Concurrently elevated BBB
permeability and blood plasma volume in this region is intriguing and could indicate ongoing vascular
remodelling in tissue beyond the acute stroke lesion. The correlation between peri-lesion K" and
infarct volume but not stroke severity suggests that persistent BBB permeability at this time point may
relate to the spatial extent of the initial tissue injury but not the acute neurological impairment
resulting from stroke. Participants underwent a 60-minute comprehensive cognitive test battery at
the time of scanning [6] and testing is carried out yearly; longitudinal follow-up will determine if these
patterns are related to or can predict later cognitive decline.
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Introduction: ‘Chemsex’ is the use of drugs such as methamphetamine, GHB/GBL, mephedrone, and
ketamine in sexual contexts by gay, bisexual, and other men who have sex with men (GBMSM) [1].
Researchers have extensively characterised the individual effects of these substances. However,
chemsex typically involves polysubstance use during prolonged sessions, sometimes lasting several
days. The long-term neurobiological impact of this distinctive pattern of polysubstance use,
combined with sexual activity, remains unclear. Chemsex is associated with mental illness,
compulsive sexual behaviour, and addiction-related harms, including psychosis and death through
overdose [2]. Our study is the first to use multimodal MRI to examine how chemsex affects brain
structure and function.

Methods: We recruited GBMSM actively and significantly engaged in chemsex, along with age-
matched GBMSM controls who do not use drugs. Participants underwent an hour-long neuroimaging
session, during which we collected structural MR, resting-state fMRI, task-based fMRI (using the
Stop-Signal Task), proton magnetic resonance spectroscopy ("H-MRS) from the pregenual anterior
cingulate cortex (pgACC), and neuromelanin-sensitive MRI of the ventral tegmental area and
substantia nigra (VTA/SNc). All participants completed validated psychometric questionnaires (PHQ-
9, GAD-7, BIS-11, CSBI-13, ASSIST). Additionally, participants in the chemsex group provided detailed
information about their drug use through comprehensive qualitative interviews.

Results: This abstract presents our emerging findings. BIS-11 and CSBI-13 scores were raised in the
chemsex group. Preliminary analyses of NM-MRI signal intensity in the SNc and VTA in chemsex
participants relative to controls along with other task and resting state data will be presented.

Discussion: This is the first multi-modal MRI study completed in people involved in chemsex. Our
interim results support the feasibility of multimodal imaging in this under-researched population and
reinforce the relevance of addiction neuroscience frameworks to chemsex-related harms. Our full
study will integrate these data with 'H-MRS (glutamate/GABA levels in the pregenual anterior
cingulate cortex), resting-state and task-based fMRI, alongside clinical and behavioural measures, to
understand the neurobiology of chemsex in GBMSM.

Conclusions: Our interim findings suggest that chemsex is associated with elevated impulsivity and
compulsive sexual behaviour, alongside emerging differences in neuromelanin signal intensity in key
dopaminergic regions. These results support the hypothesis that chemsex may affect brain systems
involved in reward, inhibition, and motivation. Ongoing analyses will clarify how these neurobiological
findings relate to clinical and behavioural data. This work underscores the importance of applying
addiction neuroscience to understand chemsex and paves the way for better-informed interventions.
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Introduction: The risk of developing dementia is well-established to be increased in stroke survivors.
The evidence suggests that the risk trajectory of cognitive impairment is biphasic: the acute
impairment is associated with stroke size and location more closely than the later cognitive trajectory
[1]. It has been suggested that the 6-month post-stroke timepoint can therefore be used as a baseline
for studies assessing the latter, chronic phase of cognitive decline in stroke survivors [2].
Characterising the effects of infarct volume and location to the cognitive performance at this period
of initial stabilisation could therefore provide additional insight into our understanding of post-stroke
cognitive trajectory.

Here, we explore the relationship between acute infarct volume/location and cognition at 6 months
after stroke in a multi-centre cohort of stroke survivors.

Methods: Infarct ROIs were manually delineated on acute diffusion-weighted images from 119
ischaemic stroke patients and registered to MNI152 space. Regional analysis was performed according
to the DKT cortical parcellation and ASEG subcortical segmentation of the MNI152 template
(Freesurfer v7.4.1). Each cortical and subcortical region was assigned a percentage of total voxels in
the region that overlapped with the infarct ROI, with regions affected by an infarct in at least 18
patients chosen for further analysis. Participants underwent a 60-minute comprehensive cognitive
test battery at 6 months post-stroke, and z-scores for 5 cognitive domains were calculated [3].

Linear relationship between domain-specific cognitive z-scores and the level of infarct occupation of
specific regions (logl0 transformed due to lognormal distribution) was assessed with Pearson’s
correlation coefficient (R v4.4.2). No multiple testing corrections were applied.

Results:

Table 1: Summary of brain regions analysed. Pearson’s r between cognitive domain z-score and
log10 transformed infarct occupation percentage. N between 28-18. *P < 0.05, **P < 0.01

Global | Language Processing Memory | Visuospatial Working

speed memory
Putamen -0.39* -0.43* -0.38* -0.35 -0.18 -0.06
Caudate -0.35 -0.29 -0.5** -0.35 -0.11 -0.01
Precentral -0.04 -0.08 -0.06 0.23 -0.11 -0.17
Postcentral 0 0.07 -0.04 -0.06 -0.09 0.14
Thalamus 0.04 0.01 0.08 0.11 -0.02 -0.11
Insula -0.26 -0.16 -0.33 0.02 -0.35 -0.06
Superior | 5 0.2 0.04 0.10 0.21 -0.26

parietal
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Fig. 1. a) Infarct location for 119 ischaemic stroke patients, registered to MNI152. Total infarct
volume ranged from 69 mm? to 81561 mm? (median: 1876.5 mm?3, IQR: 6683 mm?3). b) Proportion of
right putamen affected by an infarct (%, log scale) is negatively correlated with performance in
language (R =-0.43, p = 0.02) and processing speed (R =-0.38, p = 0.04) - tasks, as well as global
cognitive impairment (R=-0.39, p =0.04). N =28

Discussion: Previous work identified basal ganglia and thalamic infarcts as significantly associated with
global cognitive impairment [5,6]. In contrast, our findings suggest no significant association of
thalamic infarct with any of the cognitive domains (Table 1). The putamen was the only region
identified that displayed a negative correlation with global cognitive performance, as well as impaired
processing speed and language skills (Figure 1). Putamen was previously demonstrated to play a role
in speech articulation and word processing, possibly thanks to its contributions to motor control [3].
Caudate nucleus infarcts were strongly associated with impairments in processing speed, which is
consistent with previous findings in dementia patients [4].

This work highlights the putamen as a strategic infarct location, where stroke survivors with putamen
infarcts may be at a higher risk of impaired executive function and language several months after
stroke. Our findings stress the importance of controlling for infarct location in analyses examining
cognitive data collected chronically after stroke.
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Detection of brain metabolites in HIV-associated tuberculous meningitis using magnetic
resonance spectroscopy

James R. Barnacle'3, Laeeqga Allie?, Nonzwakazi Bangani?, Lauren Barron3, Cari Stek?, Petronella
Samuels®, Georg Oeltzschner®, ltamar Ronen®, Frances Robertson*, Angharad G. Davis’, Robert J.
Wilkinson®3

The Francis Crick Institute, London, UK

2Department of Infectious Disease, Imperial College London, UK

3Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory, RSA
4Cape Universities Body Imaging Centre, University of Cape Town, Observatory, RSA
>Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore,
USA

®Clinical Imaging Sciences Centre, University of Sussex, Falmer, UK

"Blizard Institute, Queen Mary University of London, UK

Introduction: Tuberculous meningitis (TBM) causes death in a quarter of cases, and a third of survivors
suffer persistent neurological disability [1]. In the CSF of children with TBM, genes associated with
glutamate release and GABA degradation are overexpressed, and glutamate and glutamine
concentrations are significantly increased compared to non-infectious controls [2], [3]. We
hypothesised that brain damage in TBM may be driven by neuroexcitotoxicity and that glutamate
would be increased and GABA decreased in the basal ganglia of adults with TBM.

Methods: Adults with HIV-associated TBM provided consent for up to three MRS scans at day 7, week
4 and week 8 following enrolment. Two age and ethnicity matched control groups living with and
without HIV infection were included. Targeted LC-MS metabolomics was performed on lumbar CSF
from TBM patients taken +/- 48 hours of the day 7 and week 4 scan (Figure 1A). The basal ganglia, the
most common region of vascular injury in TBM, was selected for voxel placement. Scans were
conducted at the Cape Universities Body Imaging Centre, Cape Town using a 3T Siemens Skyra MRI
scanner using a 1H 32-channel head coil. A structural T1-weighted MP-RAGE acquisition was acquired
for voxel placement and tissue segmentation. This was followed by a single voxel PRESS acquisition
with CHESS water suppression (2000 ms TR, 30 ms TE, 2000 Hz spectral bandwidth, 1024 vector size,
64 averages, 30x30x30 mm? voxel). Shimming was done using automated By, field mapping with
manual shimming of water to <26 Hz if FWHM 226 Hz. MEGA-PRESS acquisitions were then obtained
from the same voxel using (2000 ms TR, 80 ms TE, 320 averages, 2000 Hz acquisition bandwidth, 2048
vector size with ON editing pulse at 1.9 ppm targeting GABA). MEGA-PRESS spectra were analysed
with Gannet v3.4.0 [4]. PRESS spectra were analysed with Osprey v2.9.6 outsourcing the fitting to
LCModel using a custom macromolecule basis set for 3T PRESS TE30 [5], [6]. The following metabolites
were combined: GIx = Glu + GIn; tNAA = NAA + NAAG; tCho = GPC + Cho + PCh; tCr = Cr + PCr.
Metabolites were excluded for all scans if any scan had a CRLB >25%. Visually poor-quality spectra
were excluded. For the MEGA-PRESS data, scans with a water or creatine FWHM >15 Hz were
excluded.

Results: 21 HIV-associated TBM patients, and 21 HIV-negative and 22 HIV-positive controls were
scanned. 18 TBM follow up scans were done at week 4 and week 8. 70/100 PRESS and 42/88 MEGA-
PRESS acquisitions passed quality control. There were no significant differences between groups
(Figure 1C). Over time, total choline was significantly increased at week 4 compared to day 7 (Figure
1D).

Discussion: Metabolite concentrations in the left basal ganglia, in the absence of visible lesions, did
not differ from matched controls. Over time, only total choline concentrations were increased at week
4 and 8, which may suggest delayed gliosis or infarct maturation. There are several reasons why the
other results were non-significant including the fact our TBM cohort had mild disease, scan quality
was lower than expected, and the basal ganglia may not have been the most sensitive region to target.
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Figure 1. A) Study outline. B) Example PRESS spectrum and co-registration from Osprey with custom basis set.
C) Tissue-corrected metabolite concentrations of day 7 TBM scans (n = 14), HIV-uninfected (n = 15), and HIV-
positive (n = 18) controls. D) Changes in tissue-corrected metabolite concentrations between day 7 (n = 14),
week 4 (n = 10) and week 8 (n = 13). GABA+ values are also alpha corrected. PWH, people living with HIV; ART,
anti-retroviral therapy; LP, lumbar puncture; CSF, cerebrospinal fluid; HIV, human immunodeficiency virus.
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Introduction: Functional magnetic resonance spectroscopy (fMRS) enables real-time tracking of
neurometabolites, offering insights into brain function in health and disease. Lactate, a key molecule
in metabolic psychiatry, has traditionally been studied with static MRS measures, potentially
overlooking its dynamic regulation. Drawing inspiration from exercise physiology, we hypothesized
that lactate production and clearance rates provide critical information about mitochondrial
metabolism (1). Here, we applied lactate fMRS in the anterior cingulate cortex (ACC)—a region central
to emotional regulation and characterized by high aerobic glycolysis—using a novel cognitive-
emotional task. We further examined whether these responses vary with age.

Methods: Thirty-four healthy adults (aged 21-69) underwent fMRS during an emotional face-
processing paradigm designed to impose escalating cognitive-emotional demands. Lactate and other
neurometabolites were measured in the dorsal ACC (dACC) across baseline, task, and recovery
periods. Using FSL MRS, we assessed task effects on lactate and tested for age-related differences in
metabolite dynamics (2).

Results: Lactate levels in the dACC rose significantly with increasing task intensity (p < 0.005), peaking
at 20.2% above baseline during the most demanding condition. No comparable changes were
observed for glutamate/glutamine or other metabolites. Participants over 40 years showed markedly
greater lactate responses (32.9%) than those under 40 (10.1%, p = 0.003), while baseline levels did not
differ by age (Fig. 1).
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Figure 1. Lactate and tCreatine dynamics in participants over the age of 40 (purple) and under the
age of 40 (green) in response to an emotion-cognitive task in the anterior cingulate cortex.

Mean = SEM as a percentage change from the first block (0-2 min) for 19 participants under 40 and
15 participants over 40 for Lactate and total Creatine (tCreatine). A repeated measures ANOVA was
carried out to determine the effect of time for lactate (F(1, 32) = 4.77, p = 0.036). For tCreatine there
was no significant effect of time (F(1, 32) = 1.81, p = 0.187). Significant differences in relative lactate
level changes between the 0-2 baseline block and other time blocks between the two groups are|
depicted with a purple asterisk (t(32) = -5.00, p = 0.003). The blocks corresponding with the task are
shaded, which are progressively darker to highlight the reduction in time between face presentations
and increase in intensity.




Discussion: The observed task-related lactate increases in the dACC align with fundamental
neuroenergetic models, where lactate serves as an energy substrate during periods of high neural
activity, paralleling exercise physiology (3). The pronounced age effect—greater lactate responses in
participants over 40 despite comparable baseline levels—highlights reduced neurometabolic
flexibility with ageing, likely reflecting reduced mitochondrial efficiency and altered lactate clearance
(4). Importantly, lactate dynamics, rather than static levels, emerged as sensitive markers of metabolic
differences. We also found a dissociation between lactate and glutamate/glutamine responses,
consistent with prior pharmacological fMRS work (5), suggesting that lactate regulation during
cognitive-emotional processing operates partly independently from glutamatergic neurotransmission.
Together, these findings support lactate as a marker of neurometabolic state with translational
relevance to disorders characterized by mitochondrial dysfunction and altered ACC metabolism (6).

Conclusions: Dynamic lactate responses in the dACC are sensitive to cognitive-emotional demand and
are amplified with age, suggesting reduced neurometabolic flexibility in older adults. The dissociation
between lactate and glutamate/glutamine underscores distinct regulatory mechanisms of energy
metabolism. These findings position fMRS as a promising tool to probe mitochondrial efficiency and
identify biomarkers relevant to affective psychopathology and related disorders.
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Introduction: 3P-MRspectroscopy offers a unique opportunity to quantify the metabolic changes
occurring with age and neurodegenerative disease, to better inform therapeutic approaches [1]. The
PCr/Y-ATP ratio is a key indicator of brain energy metabolism and changes in the PCr/Y-ATP ratios can
be indicative of underlying neurological or psychiatric conditions [1]. These ratios are heterogeneous
and are typically between 1 -2 in brain tissue [2]. However, brain spectroscopy presents challenges
due to the low sensitivity of MR phosphorus signals. In this study we evaluate the voxel-wise
repeatability of 3'P CSI in the thalamus and postcentral gyrus to support quantitative neurochemical
imaging. These brain regions are particularly significant because of their role in sensory processing [3].

Methods: MR experiments were conducted using a dual-tuned 1H/31P coil on a GE 3T Sigha PET/MR
scanner, with four healthy volunteers scanned on two separate days to assess repeatability. A high-
resolution whole-brain spectrum was first acquired with the following acquisition parameters;1024
samples; 5kHz bandwidth, flip angle= 40, averages=10, repetition time (TR)=10s. 3D CSI was then
acquired using a custom radial density weighted phase encoding strategy using the following
acquisition parameters; TR=210ms, echo time =0.455ms, number of points=990, FOV=25 x 25 x 25 cm,
acquisition matrix=8x8x8, phase encodes = 1278, bandwidth=5kHz, flip angle= 150 and number of
averages=2 acquired for a scan time of 8 minutes 57 seconds, heteronuclear decoupling was not used.
The data were reconstructed using 10 Hz line broadening and zero filling to a 16x16x32 matrix. A co-
registered structural axial 1H 3D T1 Bravo sequence was acquired using the same FOV as the CSI. The
open-source MATLAB implementation of OXSA [4] was modified to work with GE data and used to
overlay the reconstructed 3D CSI grid onto the 1H anatomical images for voxel localization and to
perform the Advanced Method for Accurate, Robust and Efficient Spectral (AMARES) fitting of the
spectra. The PCr/ Y-ATP ratios for the whole-brain spectrum in healthy volunteers were calculated
using the area under the curve derived from AMARES fitting of the metabolite peaks. Intra- and inter-
session repeatability were assessed by fitting voxel-wise spectral peaks in repeat scans.

Results: Fig.1 shows voxels located in (a) left thalamus, (b) right thalamus, (c) left postcentral gyrus
and (d) right postcentral gyrus along with the fitted spectra from the corresponding voxels. The
metabolites detected include, Phosphocreatine (PCr), Gamma-ATP (Y-ATP), alpha-ATP(a-ATP), beta-
ATP(B-ATP), PME, PDE and Pi. Fig. 2 presents the Bland-Altman comparison of intra-session and inter-
session PCr/ Y-ATP ratios for sub-voxels averaged across the left and right thalamus, as well as the left
and right postcentral gyri (post-CG), in four healthy volunteers. The mean coefficient of variation (CV)
for intra-session comparisons was 10% for the mean thalamus, 12% for the left postcentral gyrus, and
12% for the right postcentral gyrus. For inter-session comparisons, the mean CV was 15% for the mean
thalamus, 21% for the left post CG, and 13% for the right post CG.

Discussion: Good quality spectra were obtained in all voxels in the chosen anatomical regions and the
PCr/Y-ATP ratios are within the expected range. We evaluate repeatability and method agreement
through Bland-Altman analysis of the voxel-wise differences. Studies have shown that PCr/Y-ATP
ratios are higher in the cerebellum compared to the cerebrum [5]. Our results are consistent with



these higher apparent ratios in the thalamus compared to the post-central gyrus. The CV values
indicate good repeatability, with intrasession CVs between 10-12%, outperforming inter-session
results; only the left postcentral gyrus showed slightly higher CV inter-session likely due to partial
volume effects.

Conclusion: Robust and repeatable quantification is crucial for longitudinal 3'P CSI studies. Reliable
quantification of phosphorus metabolites in the thalamus and postcentral gyrus is feasible, supporting
future metabolic studies in these brain regions.
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Fig.1 (a) left thalamus, (b) right thalamus and (c) left postcentral gyrus (d) right postcentral gyrus and
corresponding fitted spectra.
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Fig. 2 Bland Altman plots comparing intra-session and inter-session mean PCr/Y-ATP ratios of sub-voxels in the
mean thalamus and left and right postcentral gyrus across four healthy volunteers.
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Introduction: Diffusion weighted MRI (dMRI) has been used previously to characterise the
microstructure of brain metastases, by applying models of tissue microstructure/representations of
the diffusion weighted signal to estimate clinically significant parameters such as the apparent
diffusion coefficient[1][2]. However, these estimates may be dependent on the acquisition protocol
or subject to modelling assumptions and degeneracies[3][4]. The Temporal Diffusion Ratio (TDR)[5] is
a model free approach, which does not rely on assumptions about the tissue microstructure, to
characterise restricted diffusion and water exchange in the brain, where positive TDR contrast
indicates restricted diffusion, and negative TDR contrast indicates water exchange. In this study, we
apply TDR to dMRI scans of a cohort of 21 patients to examine the intra- and inter-metastasis
heterogeneity of restricted diffusion and exchange in human brain metastases

Methods: Structural MRI scans were acquired on a 3T Siemens Prisma scanner. T1-weighted images
were acquired using a TLMPRAGE sequence(TR/TE = 2.3s/2.98ms, voxel size=1x1x1mm). dMRI data
was acquired on a Siemens 3T Connectome scanner using a diffusion-weighted Pulsed Gradient Spin
Echo (PGSE) sequence with an echo-planar imaging (EPI) readout (TR/TE=3.5s5/73.0ms, voxel
size=2x2x2mm). dMRI scans were conducted with a constant diffusion gradient duration (6 = 7 ms)
using multiple diffusion times (A=17.3,45.0ms) with b-value=4000s/mm?,N-directions=60). TDR maps
were calculated voxelwise from the dMRI scans using the following formula[5]:
Y18y — XNq S
Zil1 52,

S,; = Signal in direction i, A =17.3ms

S, = Signalin direction i, A = 45.0ms
Metastasis regions of interest (ROIs) were delineated by expert oncologists.
Results: In 8 patients, the metastasis ROIs were characterised by high positive TDR contrast in the
metastasis periphery and negative TDR contrast in the metastasis core (Fig.1), and all of these
metastases were surrounded by oedema. In this group, the percentage of voxels with positive TDR in
the metastasis ROl had range 31.6-91.9%, with mean 64.1% and standard deviation 19.3% and the
mean average TDR measured across all voxels in a single metastasis varied between -0.07 - 0.11. The
mean ROl volume (measured in voxels) was 657.0 voxels with standard deviation 253.4 voxels in this
group. In the remaining patients, there appeared to be no association between the TDR contrast in a
voxel and the location of the voxel in the metastasis (Fig.2). The percentage of positive TDR contrast
in these metastases had range 0-100%, with mean 49.7% and standard deviation 34%. The mean
TDR contrast in these metastases had range -0.19 - 0.24 and the mean ROI volume and standard
deviation was 210.1 voxels and 172.2 voxels respectively.
Discussion: Intra and inter-metastasis heterogeneity of TDR contrast was observed in the patient
cohort. A distinctive TDR contrast pattern was observed in metastases surrounded by oedema in 8
patients. The mean ROI volume of the metastases in this group was higher compared to the other
patients — this TDR contrast pattern is likely representative of a necrotic core encased by intact
metastasis tissue with a high cellularity[6]. The clinical population characteristics of patient cohort
were heterogeneous with respect to ongoing treatments (including steroids, immunotherapy,
tyrosine kinase inhibitors), previous treatments, and primary cancers, to name a few examples. This
population heterogeneity may explain the variability in TDR contrast characteristics across the
metastases in this study.

TDR = N = 60 directions
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Conclusions: TDR characterises differences in restricted diffusion across and between brain
metastases. Future work will assess changes to TDR in metastases after treatment.

Metastasis

Example patient: 3

4al

Example patient: 2

Example patient: 1

Fig. 1. Three TDR map examples of patients with brain metastases which have a high positive TDR contrast in
the metastasis periphery and low negative TDR in the metastasis core, shown in the sagittal, coronal and axial
planes.
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Fig. 2. Three examples of patients with brain metastases where there is no relationship between the location
of the voxel in the metastasis and the TDR contrast, shown in the axial plane. In example patients 4 and 5,
there is high TDR contrast across the whole metastasis; in example patient 6, the TDR contrast is negative in
the majority of the metastasis.
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Optimising phase-based magnetic resonance electrical properties tomography (EPT) for
multi-parametric mapping (MPM) MRI acquisitions in the brain
Yirun Wang?, Jierong Luo?, George E. C. Thomas?, Rimona S. Weil?, and Karin Shmueli?
!Medical Physics and Biomedical Engineering, University College London, London, UK
’Dementia Research Centre, Institute of Neurology, University College London, London, UK

Introduction: Electrical properties tomography (EPT) is a rapidly developing method to non-invasively
map tissue electrical conductivity by reconstructing it from the phase of the complex transmit field
Bf [1]. EPT has shown clinical potential to identify physiological biomarkers in the body and brain [2]
Although, in principle, phase-based EPT only relies on the transceive phase available from most MRI
sequences, prior studies have typically relied on dedicated EPT acquisitions for better accuracy and
robustness [3]. As a quantitative MRI acquisition, multi-parametric mapping (MPM) has been widely
used to investigate tissue composition and microstructure in healthy and diseased brains [4-5]. As
MPM uses multi-echo gradient-echo (ME-GRE) acquisitions, if the phase data are saved, EPT
reconstruction would be possible [6], providing additional tissue conductivity information “for free”.
In this study, we demonstrated the feasibility of EPT using MPM MRI for the first time, and optimised
and evaluated our method in phantom and in-vivo data, respectively.

Methods: MRI acquisition: MPM data was acquired from one healthy subject at 3T (Siemens, Prisma,
64-channel head coil) using ME-GRE with following parameters: TR = 25ms, TE = 23ms, number of
echoes = 8, FOV = 256mm, resolution = 0.8mm. High-resolution structural T1w image was acquired
using MPRAGE. Construction of 3T MPM brain phantom: A realistic brain phantom was constructed
to match the SNR characteristics of the in-vivo MPM data (Fig.1). Magnitude offset at TE = 0 (Mo) was
first extrapolated from ME-MPM data using ARLO [7], and the SNR of M was measured within white
matter. The transceive phase noise standard deviation was estimated at 1/SNR [8], and was added as
Gaussian noise to the noiseless transceive phase of a 3T brain phantom obtained from the EPT
challenge [9]. The corresponding magnitude of the phantom was constructed to match the SNR of the
in-vivo structural T1w data.

Phantom ¢,

Optimising EPT reconstruction for MPM MRI: Prior
to EPT reconstruction, the transceive phase (¢,)
was extrapolated from all T1l-weighted MPM
echoes using a nonlinear fit [10], then unwrapped
using SEGUE [11] with the coregistered structural
Tlw magnitude image used for magnitude and

segmentation weighting. The MagSeg surface
integral EPT method was used to minimise noise
and preserve boundaries [12]. To find the optimal
EPT reconstruction for MPM, we varied derivative
and integration kernel radii [13] in 1-mm step
between 7-10mm and 14-19mm, respectively. An
optimal set of reconstruction parameters was Fig. 1. (A) Phantom ¢, with Gaussian noise (B) In
chosen based on the mean absolute error of  vivo unwrapped ¢, (C) Phantom magnitude with
reconstructed EPT maps relative to the ground  Gaussian noise (D) In vivo coregistered magnitude
truth conductivity, mean conductivities in grey i i
matter (GM), white matter (WM) and | (mm) | (mm)| STP | GM/WMratio | CSFCV

In-vivo magnitude

cerebrospinal fluid (CSF), the number of outliers, 10 19 | 9.153 0.618 2.954
visual inspection and processing time. The 9 19 [ 9.152 0.603 2.990
optimised parameters for EPT reconstruction 8 19 | 9.138 0.568 3.080
were then applied to in-vivo MPM data. Table. 1. Summary of top three kernel

. . . . combinations (kq: derivative radius, ki: integration
Results and Discussion: The optimal derivative radius), ranked by higher GIV/WM ratio, lower

and integration kernel ra.dl.l were identified as 10 standard deviation (STD) and CSF coefficient of
mm and 19 mm, providing the best balance variance (CV)
between tissue contrast, noise suppression, and
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computational efficiency (Fig. 2A). ) i
Quantitative evaluation across
GM/WM contrast ratio, whole-brain
standard deviation (STD), and CSF
coefficient of variation (CV) confirmed
this combination as superior (Table 1).

Fig. 2B shows the EPT reconstructed ®) In Vivo MPM Conductivity Map
from the in-vivo MPM data which
exhibits clear grey-white matter
contrast (~0.42 S/m). However,
boundary artifacts are present at the
periphery of the brain and local
anomalies appear inside white and
grey matter, indicating residual noise
and reconstruction instability. When
compared to literature values, which
is approximately 0.47 S/m, 1.03 S/m and 2.14 S/m for WM, GM and CSF [14-15], respectively. In
comparison, the reconstructed conductivities were higher in WM (0.729 S/m) and GM (1.18 S/m), and
lower in CSF (1.40 S/m). Compared with WM and GM, CSF exhibits low conductivities at brain edges,
and also a broader conductivity spread with higher Conductivity Distribution in GM, WM, CSF

Coronal

Sagittal

Fig. 2. Conductivity reconstructed from (A) the noisy phantom
and (B) in-vivo Tlw MPM data using the optimal kernel size,
10mm (derivative) and 19mm (integration).

standard deviation (Fig. 3), likely due to a S5t

combination of increased phase noise, low SNR in

CSF regions and unreliable segmentation in fluid 75‘4'

sections of the brain. @;3 | 1'40‘1‘1'036 ]

Despite peripheral artifacts and residual noise, the g 1176 §0.469 |

preliminary conductivity map shows physiologically é 2 ! 0.729 # 0.278

plausible values with preserved tissue contrast and 5 ] L

anatomical consistency. Further optimisation is still ©1 IZ:' T

required for stability, and future work should ; - L
. . ot 1 —— -

explore varying different MPM parameters, such as L I |

GM WM CSF

proton-density weighted and magnetic transfer-
weighted, to increase reconstruction accuracy and Fig. 3. Conductivity distribution in grey matter

robustness for EPT reconstruction to broader  (GM), white matter (WM)and cerebrospinal fluid
applications (CSF) for in vivo EPT. reconstruction.

Conclusions: This study shows the feasibility of reconstructing conductivity maps from MPM
acquisitions. These preliminary results suggest a promising future for incorporating EPT into these
widely used MRI protocols, provided the signal phase is saved. With further validation, this approach
could support broader clinical application of conductivity mapping without requiring dedicated
sequences. Future work should also explore using the proton-density weighted and magnetisation
transfer-weighted MPM acquisitions, to increase EPT reconstruction accuracy and robustness.
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Comparing Standard and Tensor-based MP-PCA Complex Denoising Performance for a
Highly Sampled Diffusion-Relaxometry Dataset
James Robertson?, Jana Hutter?3, J-Donald Tournier'?, Joseph V. Hajnal*?, Andrada lanus?®
!Department of Imaging Physics and Engineering, King’s College London, St. Thomas’ Hospital,
London, UK
2Department of Early Life Imaging, King’s College London, St. Thomas’ Hospital, London, UK
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Introduction: Tensor MP-PCA (tMP-PCA) is an adaptation of the Random Matrix Theory based MP-
PCA denoising, which utilizes singular value decompositions (SVDs) to identify and remove noise-
representative eigenvalues that follow the Marchenko-Pastur distribution[1][2]. The tensor
adaptation exploits extra redundancy present in multi-dimensional MRI data (e.g. Diffusion-
relaxometry) to perform multiple SVDs and thus suppress additional noise. In this work we present a
comparison of denoising performances between standard MP-PCA and tMP-PCA implemented in
MATLAB (https://github.com/Neurophysics-CFIN/Tensor-MP-PCA ).

Methods: The data used was a fully sampled multidimensional dataset consisting of 5 b-values, 28
inversion times, and 3 echo times [3]. Denoising was performed on complex-valued data using MP-
PCA and tMP-PCA scripts in MATLAB. The size of the sliding window was kept constant for both
methods. The denoised data was split into subsets based on echo time, and diffusion kurtosis imaging
(DKI) fitting was then performed for these subsets to compare and evaluate noise suppression in
different SNR regimes, with the variance of derived DKI metrics used as a comparison.

Noisy MPPCA Denoised Tensor Denoised

12

12

Fig 1. Three plots showing the same representative slice of the data in three forms; noisy data (left), MP-PCA
denoised (middle) and tensor MP-PCA denoised (right). Images show a slice from a volume acquired with b =
2000 s/mm?, TE = 130ms and Tl = 3885ms at 2.5mm isotropic resolution.

Results: Tensor MP-PCA performed better than standard MP-PCA at denoising the complex data,
evident from both visual inspection (Fig. 1) and from the reduced noise present in the mean kurtosis
(MK) maps (Fig. 2) and decreased variance in the MK within a white matter region of interest (Fig. 3).
The effect is more apparent when considering the 130ms TE subset of the data. Variances in the white
matter region for the noisy, MP-PCA denoised, and tensor MP-PCA denoised at the two different
subsets are given in Table 1.

Noisy MP-PCA Denoised Tensor Denoised
80ms TE Subset 0.219 0.187 0.168
130ms TE Subset 0.493 0.349 0.256

Table 1. The variances of the mean kurtosis values within the considered white matter ROl for each TE subset
for the noisy, MP-PCA denoised and tensor denoised data.

12
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Fig. 2. Representative slice of the mean kurtosis maps for the noisy, MP-PCA denoised, and tensor MP-PCA
denoised data split into two subsets of 80ms TE and 130ms TE.
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Fig. 3. Boxplots representing the mean kurtosis values within a white matter ROI for the 80 and 130ms TE subsets
of the noisy, MP-PCA denoised, and tensor MP-PCA denoised data.

Discussion: At the shorter echo time of 80ms, tensor MPPCA performed similarly to standard MP-PCA,
with neither significantly reducing the mean kurtosis variance in the chosen white matter ROI. At
130ms TE, both methods significantly reduced the variance of the mean kurtosis compared to the
noisy data, with the tensor method yielding a notably stronger variance reduction than standard
MPPCA (p = 0.0016 and p = 0.0468, respectively). This highlights the advantage of leveraging
multidimensional redundancy when performing denoising.

Conclusions: This work exploited multidimensional redundancy to substantially improve the denoising

performance in a complex diffusion-relaxometry MRI dataset. Using a consistent MATLAB

implementation, tensor MP-PCA was more effective than standard MP-PCA. This suggests that

multidimensional acquisitions may utilise the denoising technique to push towards higher resolution

or lower SNR regimes while maintaining image quality, and without compromising research or clinical

utility.
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Estimation Methods in Alzheimer's Disease and Cognitively Normal Brain MRI
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Introduction: Total intracranial volume (TIV) serves as an important indicator of maximum brain
capacity, playing a critical role in using quantitative MRI measures for clinical assessment of diseases
such as Alzheimer’s and epilepsy 1. With the development of various deep learning—based tools and
the growing acceptance and implementation of Al software in clinical practice, the performance of
both traditional and Al-based methods for TIV estimation needs investigating.

Methods: We evaluated three software tools: the deep learning-based SynthSeg 2.0 (https://github.
com/BBillot/SynthSeg), the conventional software SPM25 (https://github.com/spm/spm/releases/
tag/25.01.02), and FreeSurfer 7.4.1 (the stable release as of June 2023). FreeSurfer was utilized with
two methods: segmentation-based TIV (sbTIV, https://surfer.nmr.mgh.harvard.edu/fswiki/sbTIV) and
estimated TIV (eTIV, https://surfer.nmr.mgh.harvard.edu/fswiki/eTIV). All samples were derived from
T1-weighted MRI scans obtained from the ADNI database [?. A controlled-variable design was
employed to ensure comparability between groups, matched for mean age, sex ratio, and key MRI
acquisition parameters, including field strength and slice thickness. This process yielded a study
sample comprising 20 individuals with Alzheimer’s disease (AD) and 20 cognitively normal (CN)
controls. Statistical analyses included Welch’s t-tests, paired-sample t-tests, and Bland—Altman plots.
In addition, three segmentation-based methods (SPM25, SynthSeg, Freesurfer sbTIV) were further
assessed through visual comparison, revealing several noteworthy findings.

Results: Welch’s t-test revealed no statistically significant differences between the methods in
estimating TIV for the AD and CN groups (Fig. 1). From the Bland—Altman percentage difference plots
(Fig. 2), it was observed that SPM25, SynthSeg, and FreeSurfer sbTIV demonstrated better agreement
(narrower limits of difference) compared with FreeSurfer eTIV. Qualitative visual inspection of
segmentation maps for samples showing large inter-software discrepancies (Fig. 3) revealed that
FreeSurfer sbTIV exhibited pronounced leakage beyond the meningeal boundaries compared to the
other methods.

Discussion: It is generally accepted that TIV does not change with the progression of AD 341, Although
no statistically significant differences were found between the AD and CN groups across methods
(Fig. 1), it can still be observed that, except for SPM25, the other three methods tended to yield slightly
lower TIV values in the AD group. The lack of significance may be due to the low number of samples,
and work in a larger group and diverse datasets would give more evidence to the result. From this
perspective, SPM25 may provide more stable estimates for normalisation of brain volume.
Considering the paired t-test results together with the Bland—Altman percentage difference plots
(Fig. 2), SPM25, SynthSeg, and FreeSurfer sbTIV demonstrated narrower limits of difference and better
overall consistency than FreeSurfer eTIV. Further visual inspection of segmentation maps for samples
showing large inter-software discrepancies (Fig. 3) revealed that FreeSurfer sbTIV exhibited
pronounced leakage beyond the meningeal boundaries, SPM25 showed evident under-segmentation
of cerebrospinal fluid regions, whereas SynthSeg provided relatively stable and well-confined
segmentations within the intracranial space, suggesting that SynthSeg may be the most stable
method, followed by SPM25.

Conclusion: We recommend selecting the software method based on the specific needs and aims of
each study, in reference to the findings above.
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Fig. 1. Comparison of TIV estimates between CN and AD groups across four methods using Welch’s t-test.

Box plots illustrate TIV estimates (x10° mm3) in CN and AD groups, calculated using four different methods. “ns” denotes non-significant
comparisons.
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Feasibility of using convolutional neural network for automated
low-contrast detectability in MRI QA

Belinda Ding?, Lauren Fowler!, Robert Flintham?, Nigel Davies®
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Introduction

Low-contrast object detection is a critical component of MRI quality
assurance (QA), particularly for evaluating scanner performance over
time. The ACR MRI phantom includes a dedicated low-contrast
module comprising four slices, each with ten spokes containing three
low-contrast circles (Figure 1)1. Conventionally, the visibility of these
circles is assessed manually, which is a time-consuming and
subjective process poorly suited to longitudinal QA. However, due to
the complexity of this module, it is often excluded from existing

automated QA workflow at our site?.
Figure 1: Low-contrast objects in

the highest-contrast slice (slice
convolutional neural network (CNN), trained on historical QA data, to 11). The low-contrast objects
automate assessment of this low-contrast module. Our aim was to appear as rows of small circles,
with diameters ranging from 1.5
mm to 7.0 mm, radiating like
spokes from the centre of the
custom-trained CNN was benchmarked against LPIPS (Learned (jrcle (three circles/ spoke). Other

Perceptual Image Patch Similarity), a widely adopted perceptual slices are similarly configured,
with contrast values ranging from
1.4% (slice 8) to 5.1% (slice 11).

To address this gap, we investigated the feasibility of using a

develop a method that enhances consistency, reduces user burden,
and supports scalable, longitudinal QA. The performance of the

similarity metric based on pre-trained deep neural networks.

Methods

Five T;-weighted image volumes were randomly selected from the local MRI QA database. All images
were acquired using head coils and followed the ACR-recommended phantom positioning guidelines
(low-contrast module on slices 8 - 11). Four datasets were acquired on 1.5 T scanners (Siemens Sola
x2, Siemens Altea x1, Philips Ingenia x1) and one on a 3 T Siemens Skyra system.

All 600 circles (5 volumes x 4 slices x 10 spokes x 3 circles) were independently assessed by
two raters (BD, LF) and assigned a binary visibility score: 1 (visible) or 0 (not visible). Consensus labels
(defined as visible only when both raters agreed) were used to train the CNN model.

LPIPS computes perceptual similarity by comparing deep feature activations of image
patches®. To facilitate this comparison, we generated modified images in which each circle was
‘removed’ by applying Telea’s inpainting algorithm, which fills the circular region using information
from surrounding pixels. The perceptual similarity between the original and modified images was then
quantified using LPIPS, employing a VGG backbone with learned weights.

The CNN was designed to estimate the probability of each circle being visible, using both image
data and contextual metadata. For each circle, a 20x20 pixel patch was extracted and paired with
spatial tags (slice number, spoke number, circle index) and its LPIPS score. The CNN had two branches:
a convolutional stream for image processing and a fully connected stream for encoding contextual
data. These were merged and passed through further dense layers to produce a visibility probability.
Data were split into training (80%) and validation (20%) sets with stratified sampling. Class imbalance
(565:35) was mitigated in the training set using oversampling of the minority class and class weighting.
Training was performed using binary cross-entropy loss with the Adam optimiser. Model performance
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was evaluated on the fixed validation set using the area under the receiver operating characteristic
curve (AUC) and sensitivity at a fixed specificity threshold of 80%.

Results and discussion

Inter-rater agreement was substantial, with a high Prevalence-Adjusted Bias-Adjusted Kappa (PABAK)*
of 0.94. McNemar’s test® revealed no significant asymmetry in disagreement patterns (p = 0.48),
indicating consistent annotation behaviour. However, agreement on the negative class was lower, with
a Negative Percent Agreement (NPA) of 0.49, highlighting difficulties in consistently identifying non-
visible circles.

Figure 2 presents the sensitivity and specificity of each metric across different thresholds and
the corresponding confusion matrices at the threshold where specificity reaches 80%. CNN
outperformed LPIPS with higher specificity (98% vs 85%) and accuracy (97% vs 85%). Deviation of LPIPS
from human raters also resulted in large differences in the final score for each phantom (Figure 3).
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Figure 2: A, B) Sensitivity (purple) and specificity (pink) of LPIPS and CNN are plotted against different thresholds.
C, D) Confusion matrix for LPIPS and CNN at the threshold where specificity reaches 80%.
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rater agreement, with a Cohen’s kappa of 0.76 and
=l = = PABAK of 0.95. McNemar's test (p = 0.80) indicated
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model was trained on data from scanners that

Figure 3: Plot showing how each rater, LPIPS and CNN  Passed QA checks, so its performance on faulty

scored each circle around the 5 data sets. The final systems is yet to be assessed. Also, all training data
score (defined as the sum of the number of completed

SRR were acquired using head coils and its applicability
spokes on each slice) is given in brackets.

to body coil images remains uncertain.

Conclusion

This study demonstrates that a CNN can reliably automate low-contrast detectability assessment in
MRI QA, outperforming LPIPS and showing strong agreement with human raters. Further validation
across diverse scanners and fault conditions is needed to confirm its robustness and broader
applicability.
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Using functional MRI neurofeedback to modulate self-blame in major depressive disorder.
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Introduction: Major depressive disorder (MDD) is commonly framed as the result of general increases
in negative emotion [1]. An alternative theory is that specific increases in self-blaming emotions,
relative to other-blaming emotions, is instead what sows vulnerability to depression [2]. Though these
two theories likely correspond to dissociable subsyndromes of the disorder deserving of equal
attention, academic and clinical efforts have typically given primacy to the former over the latter [3].
Consequently, many current interventions do not address self-blaming biases specifically, which may
result in a considerable proportion of patients responding insufficiently. fMRI neurofeedback is a novel
technology well-poised to deliver self-blame-specific interventions. The subgenual cingulate cortex
(SCC) is a key hub within the self-blame neural network, representing a potentially potent
neurofeedback target [4]. The current study probed the feasibility of a single-session neurofeedback
trial harnessing SCC BOLD activity as the sole training target.

Methods: 20 participants with current MDD were allocated to two active intervention groups,
representing target activation patterns that, though opposite, have both been observed in healthy
controls relative to MDD cohorts [5,6]. By pitting these interventions against each other directly, we
hoped to clarify which one possesses the most therapeutic potential. In Intervention A (n=10),
participants received neurofeedback to increase SCC activity during a ‘guilt’ task and decrease it during
an ‘indignation’ task. In Intervention B (n=10), participants were encouraged to do the opposite. The
primary outcome measure was the pre- to post-neurofeedback change in SCC BOLD activity. The
secondary outcome measure was the pre-to post-neurofeedback change in clinical profile (self-esteem
and symptom severity).

Results: Clinical scores improved significantly following neurofeedback, but intervention differences
were not observed. Neurofeedback performance was greatest for Intervention B participants while
they engaged in the indignation task, suggesting that upregulation of SCC activity for other-blame
represents the most achievable training protocol. Neuroimaging analysis revealed one principal cluster
of increased activation following neurofeedback (associated with the left temporoparietal region),
specifically for indignation (relative to guilt) and Intervention B (relative to Intervention A; Fig. 1).
Inferences from the results are limited by the small sample size, in addition to other technical issues.

Discussion: The general clinical improvements satisfy feasibility study requirements and demonstrate
that engagement with negative emotions during neurofeedback is safe. The finding that modulation
of the SCC is most achievable for indignation contributes to growing evidence that this region is more
functionally heterogeneous for causal agency representations than previously assumed. Lastly, the
functional neuroimaging observations demonstrate that self-blame-specific neurofeedback likely
engages a distributed network beyond the SCC, with implications for future target selection choices.

Conclusion: In summary, the results justify more adequately powered investigations into SCC-oriented
neurofeedback for depression.
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Fig. 1. Z-stat map from a whole-brain GLM investigating neural changes from pre- to post-neurofeedback. One
cluster was reported for this analysis, specifically representing an increase in activation in Intervention B
participants under the indignation condition, from pre- to post-neurofeedback (MNI x=-56.5, y=-26.5, z=17.5). It
likely represents a moderate effect size (max z-stat=4.0, PSC=1.28%). The cluster is lateralised to the left
hemisphere, in the left temporoparietal region.
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Coupled grey matter BOLD-CSF oscillations measured at 7T during wake and sleep.

Qin Li%, lan D Driver?, Yang yang?, Neil A Harrison*, Mara Cercignani*

Cardiff University Brain Research Imaging Centre, Cardiff, Wales, United Kingdom.

Introduction: It has been previously shown that during non-rapid eye movement (NREM) sleep, neural
slow waves are coupled with low-frequency hemodynamic oscillations and accompanying oscillations
in CSF flow [1]. These findings point to a coordinated pattern linking brain activity, blood flow, and CSF
dynamics, suggesting a connection between sleep-related neural processes and brain waste clearance
[2]. In this study, we used 7T to measure CSF dynamics and grey matter (gBOLD) signals, aiming to
reproduce previous findings and compare patterns between wakefulness and sleep in healthy
participants.

Methods: 9 participants (age-range: 25-33 years, 6 males) without sleep complaints, as assessed by
validated questionnaires [3], underwent two MR-sessions: once during sleep following a whole-night
of sleep deprivation, and once during wake following a normal night of ~8 hours sleep. All scans were
conducted in the morning (6-10 o’clock). Because simultaneous recording of EEG data at 7T is not
possible, we used a multimodal approach to determine sleep and wakefulness during scanning. This
included real-time button press feedback, breathing patterns and post-scan subjective report.

MRI data were acquired with a Siemens 7T MAGNETOM scanner. The full protocol included sodium
and proton imaging. For the purpose of this work, we used the anatomical volume (MP2RAGE) [4]and
resting state function MRI (fMRI). To focus on fluid flow, all fMRIs were performed with eyes closed,
with the boundary edge of the imaging volume placed below the fourth ventricle (Fig. 1), allowing
detection of CSF flow into the brain [1]. Acquisitions were performed with a multiband accelerated
EPI sequence [5] (TR: 1.5 s, TE: 25 ms, GRAPPA = 2, MB = 4, 400 volumes, 1.5 mm isotropic), enabling
analysis of continuous low-frequency gBOLD and CSF dynamics during sleep.

MP2RAGE images were segmented using FreeSurfer to generate binary masks of the grey matter (GM)
and fourth ventricle for subsequent analysis. To minimise partial volume effects at the boundaries,
the fourth ventricle mask was further refined using morphological erosion. For all fMRI datasets,
processing streams followed the methods in [1] and are shown in Fig.1.

Motion correction,

Raw fMRI data EPI distortion correction Slice timing correction . . " .
physiological noise correction

Eroded fourth ventricle Grey matter ROI
ROl extraction extraction
Detrend, filter 0-0.1 Hz Filter 0-0.1 Hz
CSF inflow Time derivative (d/dt

BOLD)

Multiply by -1, set <0 to

Power spectral density 0 (-d/dt BOLD), detrend

and cross-correlation
analyses gBOLD inflow

Fig. 1. First slice position (red line) GM mask (yellow), fourth ventricle mask (blue), and flowchart of
preprocessing steps on each data type used in PSD and cross-correlation analyses.

Results and discussion: All participants maintained continuous button presses throughout the
awake scan and no response for at least 80% of the sleep scan. Previous studies have shown that
low-frequency (0 to 0.1 Hz) CSF power and gBOLD signal amplitude increase during NREM sleep [1].
4 of our participants showed increased CSF power in the 0.03 to 0.1 Hz band, which likely reflects
NREM sleep and 1 no obvious difference. As shown in the mean PSD of these 5 participants, the
dominant oscillation in the CSF signal was below 0.05 Hz (Fig. 2) during sleep compared to wake
state suggesting they were likely in deep NREM sleep. The other 4 participants showed lower CSF
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power in this band during the sleep acquisition suggesting they were unlikely to be in deep NREM
sleep. In addition, in the 5 participants likely in deep NREM sleep, the CSF signal was tightly coupled
with gBOLD oscillations during the sleep (Fig. 3b) but not the wake scan (Fig. 3a). The CSF signal also
strongly correlated with the negative derivative of the BOLD oscillations as previously reported (Fig.
3c). This suggests an alternation between blood flow (and accompanying increase in cerebral blood
volume) causing compressive efflux of CSF from the fourth ventricle followed by compensatory CSF
influx. Cross-correlation analysis further revealed that changes in the gBOLD signal preceded CSF

fluctuations by approximately 3.0 seconds (Fig. 3d).
Power Spectral Density

Sleep
60 — Wake

Power/Frequency (dB/Hz)

0.05 0.1 0.15 0.2 0.25 0.3 0.35
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Fig. 2. Mean PSD of CSF signal (n = 5).
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Fig. 3. (a,b) Example time series of the gBOLD and CSF signal from one participant: during sleep,
signals are high amplitude. (c) CSF time series and the —d/dt BOLD signals were strongly correlated.
(d) Cross-correlation of CSF and derivative of gBOLD has a max R = 0.6 at delay =—-3.0's.
Conclusions: Although we could not detect with certainty the sleep phase during scanning due to the
challenge of using EEG at 7T, our results reproduced previous findings and suggest that sleep cycles

may be inferred from CSF signal dynamics when EEG is not available.
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Investigating the Repeatability of Phase-Based Magnetic Resonance Electrical Properties
Tomography (EPT) in the Human Brain
Philippa Sha?, Jierong Luo!, Matthew Cherukara?, Karin Shmueli?
!Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom.

Introduction:

Phase-based magnetic resonance electrical properties tomography (MR-EPT) is an emerging technique to non-
invasively measure tissue electrical conductivity (o) from the MR transceive phase (¢o), via the Helmholtz
equation [1]. Despite technical advancements, the repeatability of EPT remains largely unstudied. In this study,
we investigated and compared the repeatability of four different EPT reconstruction methods we developed
[2], optimised and applied to the human brain.

Methods:

Data acquisition: Ten healthy volunteers (seven female, aged 23-30 years), recruited as part of a previous study
[3], were scanned in two sessions one week apart, with three identical scans per session. Multi-echo 3D GRE
images were acquired using a 3T Philips Achieva system, with sequence parameters: 4 echoes, TE; = ATE = 4.61
ms, TR = 22.0 ms, resolution = 1.25 x 1.25 x 1.25 mm?, flip angle = 12°.

EPT reconstruction: An in-house EPT pipeline [2] was applied to the denoised [4] complex GRE data. A total field
map was obtained from a non-linear fit of the complex data over all TEs [5]. Residual phase wraps were removed
using SEGUE [6]. The transceive phase, ¢o, was estimated by predicting the complex signal at TE=0 and
extrapolating the phase. Conductivity was reconstructed via the surface integral of the ¢, gradient, using 3D
spherical kernels with four variations: (1) unmodified (Sphere), (2) weighted by magnitude intensity (Mag), (3)
weighted by tissue segmentation (Seg), and (4) weighted by both magnitude and segmentation (MagSeg). Each
approach was optimised, with details provided in Table 1.

Magnitude-based Segmentation-based Differential kernel Integral kernel
Method . s . .
weighting weighting radius (mm) radius (mm)

Sphere X X 5 6

Mag / Final-echo magnitude* X 21 24

Seg X \/.SynthSeg [7] applned to 21 24

final-echo magnitude t

MagSeg  Final-echo magnitude* v SynthSeg [7] applied to 21 24

final-echo magnitude t

Table 1: Optimised reconstruction parameters for each EPT method. *Magnitude-based weighting is adjusted
automatically in each voxel based on SNR, by a free parameter 6 [8]. T Segmentations consist of cerebrospinal fluid
(CSF), grey matter (GM) and white matter (WM).

Repeatability analyses: For each method, repeatability was assessed both within-subject (including both intra-
and inter-session) and between-subject, using some of the most popular and informative repeatability metrics
[9-11]. For regional comparisons, the median conductivity was calculated within the grey matter (GM), white
matter (WM) and cerebrospinal fluid (CSF), each eroded by one voxel to avoid partial volume effects. Non-
physical negative conductivity values were considered erroneous and therefore excluded. To enable voxelwise
comparison, each subject’s conductivity maps
were co-registered using FLIRT [12, 13].

Sphere Mag

Results:

Comparison of the four methods is illustrated
in Fig. 1, which shows conductivity maps in a
representative  subject. Visually, Sphere
performed most poorly, with the highest noise
levels and reconstruction errors. Mag-
weighting suppressed noise, while Seg-
weighting preserved edges and tissue
contrast. Combining the two (MagSeg)
achieved optimal reconstruction. Fig. 1: Conductivity maps generated using each approach.

25

S/m

0
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All repeatability metrics are shown in Fig. 2: voxel-wise normalised root mean square error (NRMSE) across
repetitions, and three kinds of standard deviation (SD; within-region, within-subject, and between-subject),
calculated in each tissue type. All repeatability metrics were significantly higher in the CSF, compared to GM
and WM (p<0.02), using all four EPT methods (except NRMSE using Sphere and SD,, using Mag).

Fig. 3 further compares the performance of each method, showing the conductivity contrast-to-noise ratio
(CNR) and percentage of physically implausible conductivity values, defined as those < 0 and > 10 S/m.
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Fig. 2: Mean repeatability metrics across all subjects, calculated in each
tissue type. For all metrics, a higher value indicates poorer repeatability.
(A) Average NRMSE across repetitions, with error bars indicating inter-
subject SD. (B)-(D) Voxel-wise SD within-region (SD,), SD of median
conductivity across repetitions (SDw) and across subjects (SD»), with 95%
confidence intervals. Note that y-axis scales are not equal.
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Fig. 3: (A) Mean CNR across all subjects and
sessions, calculated between each tissue
pair. (B) Mean percentage of implausible
conductivity values, across all subjects and
sessions. All error bars indicate inter-
subject SD.

Repeatability varied considerably across EPT approaches. Overall, Mag achieved the highest repeatability, likely
due toits low tissue contrast (Fig. 3A) and structural detail. Sphere also appeared repeatable but was dominated
by noise and non-physical values (Fig. 3B). Seg and MagSeg performed similarly overall, though MagSeg greatly
reduced the rate of reconstruction errors (5.6% vs 11.9%; Fig. 3B) and improved GM-WM CNR (Fig. 3A).

Repeatability was generally poorer in the CSF, compared to GM or WM, likely attributed to a higher rate of EPT
errors in the CSF. The reason for these errors remains unclear, but may relate to pulsation effects, or increased
anatomical complexity compared to more homogeneous WM areas [14]. Future work will aim to minimise such
errors, as well as investigate the repeatability of alternative EPT methods, including deep learning [15].

Conclusions:

In this study, we investigated the repeatability of EPT in the human brain, using four different surface-integral-
based reconstruction methods. Across all methods, repeatability varied significantly between tissue types, with
the poorest repeatability in the CSF. Our MagSeg method was most effective in noise suppression and edge
preservation. This work marks an important step towards EPT validation, and highlights minimising CSF-specific

errors as a priority for future work.
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Qualitative Comparison of Harmonic and Transient Excitations
in a Finite Element Brain Model for Magnetic Resonance Elastography
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Introduction: Magnetic Resonance Elastography (MRE) noninvasively quantifies tissue mechanical
properties by analysing induced wave propagation, crucial for diagnosing neurological disorders [1]. MRE
combines mechanical excitation, motion-sensitive phase-contrast imaging, and data inversion to estimate
tissue stiffness. During acquisition, acoustic vibrations are applied using a passive driver, which transmit the
vibrations created by active driver located outside of the scanner room. Depending on the excitation type,
the wave field is sampled differently: harmonic MRE relies on repeated cycles with varying phase offsets to
capture steady-state wave motion, whereas transient MRE captures wave propagation following a brief
excitation [2]. Understanding how these excitation methods influence wave propagation is important, as it
directly affects the spatial distribution and the accuracy of reconstructed stiffness maps. This study directly
compares harmonic and transient excitations to reveal how each method uniquely governs wave
propagation characteristics and consequently shapes the spatial distribution and interpretability of
mechanical properties in brain MRE. Computational models such as finite element (FE) simulations can be
utilized in MRE studies to simulate wave propagation and systematically investigate how anatomy and
material properties influence tissue mechanics. In this study, we used the open-source FEBio [3] software
to simulate wave propagation in a 3D simplified FE model of the brain.

Methods: A 3D brain geometry was
exported in STL format from a previously . .
published finite element (FE) model [4]. I

a
This geometry was imported into : /\\
MATLAB using the GIBBON toolbox [5] to :
generate an input file for FEBio oo ,} )
simulations. The mesh was created with . | “3’
TetGen using tetrahedral (tet4) elements, ‘ P ’
consisting of 587,811 elements for the 5 ~

b
d

brain and 450,645 elements for the //
cerebrospinal  fluid (CSF). Material

properties used in FE simulation shown in C e
Table.1 were selected from published . / \
literature. Since real CSF behaves as a § "-\
fluid and cannot resist shear (shear § / \\
modulus G = 0), it is challenging to model 2 |” y ;
it directly in standard FE simulations TE ‘ \J
without advanced solvers. To avoid 3

numerical issues and maintain a clear N { g

mechanical contrast with brain tissue, the I_,« Y

CSF was modelled as a very soft solid.

Two types of mechanical loading were Fig. 1. Visualization of the 3D brain finite element (FE) model
simulated: (1) Harmonic excitation at and anatomical structures. (a) Cut view of the meshed brain
60.1 Hz, using a continuous sinusoidal model showing tetrahedral elements representing brain tissue
motion; and (2) Transient excitation, (red) and cerebrospinal fluid (CSF) (blue). (b) Axial cross-

section of the brain model highlighting internal structures. (c)
Lateral view of the brain model surface with the indicated
o . . direction of applied sinusoidal motion (Y-axis), simulating MRE
co.ndltl.ons (where an inflatable pillow excitation. (d) Midsagittal view of the brain illustrating the
driver is used underneath the head), a Y- anatomical regions. Coordinate axes (X, Y, Z) are shown
direction displacement of 150 um was according to MR scanner coordinate system for reference in
applied to all nodes on the outer CSF each panel.

surface. These nodes were also fixed in

using a single sinusoidal impulse. To
attempt to replicate experimental MRE
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the X and Z directions to simulate the

skull’s restriction. Simulations ran for 200 | ' Young’s Modulus | 100 | Pa
ms with a time step of 2 ms, ensuring CSF neo-Hookean | Poisson’sratio | 0.495 | -
consistent time resolution for both | | Density 1005 | kg/m?
loading types. Post-processing was | Young's Madulys | 000 | Fa
carried out in MATLAB to extract Y- Brain neo-Hookean Poisson’?ratio 0.49 -
Density 1040 | kg/m3

direction displacement data and compare

the harmonic and transient responses Table 1. Material properties of CSF and Brain used in FE
using 2D image slices.

Results: Simulations were performed using both harmonic and transient excitations to investigate
differences in wave propagation within the brain model. Sagittal slices at different time-points in the
simulation revealed distinct wave patterns under harmonic and transient excitations (Fig. 2). Harmonic
excitation produced smooth, periodic wavefronts with consistent propagation across the brain, reflecting
steady-state behaviour. In contrast, transient excitation generated complex but coherent wave patterns
with broader spatial variation and faster attenuation. Despite the shorter excitation duration, transient
loading still produced measurable wave propagation suitable for analysis.

Harmonic

Transient

Fig.2 Shows displacement fields in the Y-direction for harmonic (top row) and transient (bottom row) excitations at
different time-points in the simulation within a sagittal slice of the brain model.
Discussion: This study shows that both harmonic and transient excitations can generate usable wave
patterns in the brain model. While harmonic loading produced smooth, periodic waves, transient excitation
resulted in more complex but analysable waveforms. Although a simplified model was used, consisting only
of homogeneous, elastic brain and CSF, the results demonstrate how excitation type affects wave
behaviour.

Conclusions: This study used a simplified finite element brain model to qualitatively examine the effects of
harmonic and transient excitations on wave behaviour. The simulation results revealed distinct
spatiotemporal wave characteristics associated with each excitation type. The model effectively captured
these differences, demonstrating its suitability for exploring excitation-dependent dynamics in MRE. Future
work will focus on incorporating viscoelastic and anatomically detailed properties to enhance physiological
accuracy and broaden clinical relevance.

Acknowledgements: Mehmet Nebi YILDIRIM's PhD study was funded by the Republic of Tlrkiye Ministry of
National Education under the Study Abroad Scholarship Program.
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Evaluating structural uncertainty in accelerated MRI: are voxelwise measures useful
surrogates?
Luca L. C. Trautmann?, Peter A. Wijeratne %, Iltamar Ronen?, Ivor J. A. Simpson?
! SussexAl Centre, Department of Engineering and Informatics, Brighton, UK
Brighton and Sussex Medical School, Brighton, UK,

Introduction: Magnetic Resonance Imaging (MRI) offers high-quality, non-invasive visualization but
longer acquisition times limit clinical use [1,2]. Accelerated MRI using deep learning reconstruction
can shorten scans but introduces ill-posedness, requiring robust and clinically relevant uncertainty
quantification [2]. We stipulate, that the predominantly used voxelwise intensity-based uncertainty
maps are poorly aligned with clinical needs. We argue that uncertainty quantification must be task-
aware, tied to diagnostic goals.

Methods: We used the Calgary Campinas 2022 challenge dataset [5]. Three reconstruction models
were ensembled: UNET, Variational Networks [6], and Recurrent Inference Machines [3], trained with
identical hyper-parameters but different weight initialisations. All reconstructions were performed
with 5x acceleration, preserving 1 mm isotropic voxel size at both input and output. Ensembled
reconstructions were passed through SynthSeg [4] to measure morphological variability. Within-
ensemble variability and bias were compared to fully sampled references. Estimated brain structure
volumes were used as the primary downstream metric. Bilateral structures were aggregated by
summing left and right hemisphere volumes. Ensemble variability was quantified using the coefficient
of variation (CV) of predicted volumes, while bias was defined as percentage deviation from fully
sampled references.

Results: All models exhibited structural variability within ensembles (0.5—-3.5% volume variation), with
UNET highest and RIM lowest variability. We further tested whether voxelwise intensity uncertainty
could explain morphological variability. For each structure, we correlated voxel-level standard
deviation maps with normalized volume variability across the ensemble. Correlations were
consistently weak (R? values below 0.32 for all models), suggesting voxel-level uncertainty maps are
not reliable predictors of ensemble variability in clinically relevant structures. Regression analyses
using voxelwise uncertainty histograms confirmed this, yielding low predictive power.

Fig. 1. Example slices from ensemble reconstructions showing subtle structural differences
(white/grey matter thickness, shifted boundaries) between models trained on the same
undersampled data.
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Fig. 3. Scatter plots comparing voxelwise intensity uncertainty with morphological volume variability.
Low correlations show voxel-level measures fail to predict clinically relevant uncertainty.

Discussion: Voxelwise uncertainty fails to capture reconstruction bias or morphological variability.
Standard image quality metrics (SSIM, PSNR) do not reflect structural uncertainty.

Conclusions: Our research suggests that voxel-level uncertainty measures are inadequate surrogates
for morphological uncertainty in accelerated MRI reconstruction.
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Introduction: Magnetic resonance imaging (MRI) is highly susceptible to motion effects, due to the
nature of its data acquisition in frequency space; even slight or gradual motion during scanning can
compromise the entire image’s quality and affect its diagnostic usefulness. This especially impacts
the efficacy of 7 Tesla (7T) MRI due to its enhanced image resolution compared to clinical-strength
systems. Real-time (prospective) motion correction solutions provide the clinical appeal of reducing
post-processing time; deep learning-based methods have the potential to offer even faster real-time
imaging volume updates to further reduce scan times. This project seeks to develop a model which
outputs rigid motion parameters and replaces the image registration step in MS-PACE, a prospective
motion correction method for fMRI proposed by Hoinkiss et al. [1,2]. This abstract presents early
work on reproducing the image registration method and model development.

Methods:

Equipment: Jupyter Notebook, Image Calculation Environment (ICE; Siemens proprietary environment
for MRI image reconstruction), SimplelTK (simplified interface for Insight Toolkit (ITK)).

Dataset: Resting-state fMRI timeseries from the Autism Brain Imaging Data Exchange (ABIDE) open-
source dataset [3].

The image registration method from MS-PACE, originally developed in ICE, was replicated in Python
with SimplelTK. Rigid 3D transformations were applied to echo-planar imaging (EPI) volumes and
registered to the original volume; the performance was assessed using Mattes Mutual Information,
the inverse of which is minimized in the registration process.

We are currently exploring avenues for fine-tuning a foundation model such as uniGradICON, which
performs deformable medical image registration, for feature extraction and rigid registration [4]. A
training dataset was built from EPI volumes with simulated rigid motion of sub-pixel translations and
sub-degree rotations.

Results: The image registration method using SimplelTK did not perform as well as the gold standard,
with the mutual information metric not converging during optimization and the registration output
yielding inconsistent results over different runs (Fig. 1 and 2). When applied to volumes within a
resting-state fMRI timeseries, the variations in translation and rotation exceed the minimal noise that
was expected.

Figure 3 shows first results from applying uniGradICON to the ABIDE dataset, which currently only
performs deformable image registration.

Fixed volume Motion-corrupted moving volume Motion-corrected moving volume
o 0

Metric Value

20 ) 8 1
Iteration Number

Fig. 1. Single volume registration after a 20°rotation. Although the registration method corrects accounts for
the rotation, the resampled image also adds significant translation.
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Fixed volume

Motion-corrupted moving volume Motion-corrected moving volume

Metric Value

o EY 20 o 160

o o 100
0 20 40 60 o 2 40 6 lteration Number

Fig. 2. Registration of consecutive volumes in a resting-state fMRI timeseries from ABIDE. It is difficult to assess
the method’s performance outside of the non-minimization and non-convergence of the M| metric.

Source Target Warped Target+Grids Difference Before Difference After

Fig. 3. Initial outputs from applying uniGradICON to an ABIDE EPI volume that was manually translated
vertically. The difference after shows good registration performance compared to initial differences.

Discussion: The image registration method will be characterized further and improved by assessing it
against the gold standard method with healthy volunteer data. Model training will begin immediately
and we expect to obtain preliminary results that can be compared to the image registration method;
from this we will also have a better understanding of the time benefits and further hardware
requirements.

Conclusions: Real-time motion correction is an appealing direction in 7T MRI research, due to its high
susceptibility to motion effects. Deep learning-based methods can offer even quicker solutions, and
this project’s early steps seek to tap into that potential.

Acknowledgements: This project is conducted as part of an iCASE PhD studentship funded by EPSRC
and Siemens Healthineers Ltd UK.
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Introduction: Low velocity-encoding (VENC) values are desired to better capture the low flow deep
inside the ventricles and close to the ventricular wall. This improves, for example, the verification of
computational fluid dynamics simulations which aim to better understand the hemodynamics of the
heart, like the impact of trabeculae on blood flow [1]. Also, the assessment of the ventricular wall
shear stress, which is a potential biomarker for ventricular remodelling [2], would benefit. Using a
low VENC for the phase-contrast flow MRI measurement, causes the phase information to wrap
around for faster flow velocities. An additional high VENC scan can be used to unwrap the low VENC
data at the cost of additional scan time [3]. Unwrapping the low VENC data without additional high
VENC data can be computationally costly [4] or fail for large wrapped regions filling almost the whole
vessel [5].

The simple temporal phase unwrapping approach does not suffer from such limitations [6], but it is
susceptible to noise causing false phase wraps. Also, the temporal unwrapping fails for too large
jumps of the flow velocity between two consecutive cardiac phases causing phase wraps to be
missed. We aim to minimise these limitations by increasing the temporal resolution of the cardiac
phases, which lowers the jumps of the temporal phase, and by filtering the high temporal resolution
data spatially in the complex domain, which reduces the noise due to the smaller bin size of the
higher temporal resolution data. The unwrapped high temporal resolution data is then used as a
primer to unwrap the phase flow data reconstructed with lower temporal resolution.

Methods: The free-running 5D flow MRI [7] was scanned with an VENC of 64cm/s and isotropic
resolution of 2.5mm? in a healthy subject (male, 47yo). The scan was approved by the local ethics
committee and the subject gave written informed consent. The image data was reconstructed with a
regular (n=25) and high (n=75) number of cardiac bins resulting in bin widths of 45ms and 15ms,
respectively. The real and imaginary part of the high temporal resolution data was spatially filtered
using a 3x3x3 box kernel. Unwrapping was done by integrating the phase angle of the conjugate
complex multiplication between two consecutive cardiac phases. Every third bin of the unwrapped
high temporal resolution cardiac phase data matching the centre of the regular temporal resolution
data bins was used as a primer to unwrap the latter by finding the minimum for each data point
between the two data sets by adding different multiples of £2Pi.

Results: The green crosshair in Figure 1 shows the selected voxel for exemplarily plotting the z-
direction velocity encoded phase in the ascending aorta over the cardiac cycle (Fig.2). The phase
wrap between the first two cardiac phases is missed when the 25 bin data was temporally
unwrapped without any further information. Corresponding phase maps of the 4™ cardiac phase are
shown in Figs.3-5 for different unwrapping approaches.

Fig. 1. Sum of flow encoded
magnitude data over all flow
encoding directions and
cardiac phases.




Fig.2: Time series of the

regular temporal resolution
T e s i smresned room e mimer phase data (25 bins) in the
...... wrapped z-phase >

aorta close to the aortic valve
(see crosshair in Fig.1).

Fig.3: Unwrapped z-flow
phase map of the 4" cardiac
phase of the 25 binned data
using the unwrapped high
temporal cardiac phase data
as primer. The unwrapping
inside the ascending aorta is
not perfect.

Fig.4: Same as Fig.3, but
derived by temporally
unwrapping the regular

i temporal cardiac phase data
(25 bins) alone. There are
more phase wraps compared
to Fig.3.

Fig.5: Same as Fig.3, but
derived by 4D Laplacian
unwrapping the regular
temporal cardiac phase data
(25 bins) alone. The phase
wrap filling a large portion of
the ascending aorta could not
be resolved.

Discussion and Conclusions: Increasing the temporal resolution of the cardiac phases helps reducing
the number of missed phase wraps using a simple temporal unwrapping approach. This performs
even better than the 4D Laplacian unwrapping method of the regular temporal resolution data in the
presented example. The high temporal resolution phase unwrapping approach will be further tested
on more subjects and by scanning a dedicated pulsatile flow phantom with different VENC values [8].
Furthermore, other phase unwrapping methods will also be compared to the proposed method [9].
A combination of this approach with others may further improve the unwrapping performance.
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Introduction: Water T; and T, in bone marrow (BM) have shown sensitivity to pathophysiological
changes induced by blood cancers such as myeloma[l] and myeloproliferative neoplasms[2].
However, despite advances in quantitative Magnetic Resonance Imaging (qMRI), the clinical
assessment of BM lesions by MRI has largely relied on T1-weighted imaging which can be prone to the
background signal and heterogeneous distribution of fat in flat bones[1,3]. Quantitative T1 mapping
can overcome this limitation by accounting for fat in BM [4]. In this work, Dixon 3D-Spoiled Gradient
(SPGR) MRI at Variable Flip Angle (VFA) together with Bloch-Siegert B;* correction was used to
separately map the T; of water (Tiw) and fat (Ti¢) in BM at 3T. T1, maps were acquired on 15 healthy
adults and compared to water T, (T.w) maps produced by fat-suppressed, multi-slice, Spin-Echo, Echo
Planar Imaging (SE-EPI) together with Fat Fraction (FF) assessment by 3D Iterative Decomposition of
Water and Fat with Echo Asymmetry and Least-squares estimation (IDEAL) MRI[5].

Methods: Participants: 15 healthy adults were recruited, aged 22 to 66 years (8 males, 7 females).
Aside from repeatability tests conducted twice on 5 volunteers, the MRI protocol was run once on
each participant. All MRI was performed on a 70cm bore, 3T GE Premier, whole-body MRI scanner
using a 30-channel anterior and 60-channel posterior coil. T; mapping: 3D DIXON-SPGR at VFAs of
2/5/11/14/19° with a repetition time (TR) of 4.5ms. Field-Of-View (FOV): 42cm, matrix: 148x148x138,
partition thickness (PTH)=2.8mm. Duration: 6min. 46s (fitting: Matlab) + B;* mapping: multi-slice,
gradient echo, Bloch-Siegert. Matrix: 64x64x69, slice thickness (STH)=5.6mm. Duration: 1min. 56s (B:"
map generated by Sigha Works™, GE Healthcare). T, mapping: fat-suppressed, multi-slice, SE-EPI at
variable echo times of 18/21/24/28/33/37/44ms with a TR of 6s and breath holds (avg=2). Matrix:
96x96x59, STH=4.4mm (fitting: Matlab). Total duration: 1min. 24s (nominal). FF_mapping: IDEAL 1Q,
TE1/ATE: 0.9/0.7ms, TR=5.9ms (6 echoes, 2 shots). Matrix: 160x160x138, PTH=2.8mm (fitting: Signa
Works™). Duration: 1min. 13s. Image analysis: Regions of Interest (ROI) as shown in Fig. 1.
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Fig. 1. Seven BM anatomical sites spanning from the lumbar spine to the femur with ROIs drawn free hand.
Slices were selected from axial, sagittal and coronal orientations: Lumbar (L4, L5) and Sacrum (S1), lliac Crest
(IC) and lliac Posterior Tuberosity (IPT), Acetabulum (AC), Femoral head (FH), Gluteal muscle (GM).

Results: The mean T, at BM anatomical sites was 1335+95ms (T1;=308+17ms) for a mean T, of
26.8+3.5ms (Fig. 2). The Coefficient of Variation (CV) within ROIs reflected BM heterogeneity with a
CV of 20% for T1w, 14% for Taw and 23% for FF, compared to Gluteal Muscle (GM, T1w=1373+38ms and
Tow=29.9%1.2ms) with CVs of 9% and 8% and 6% respectively. FF increased from 37.5£14.3% in lumbar
L4 to 85.7+7.6% in the femoral head over the cohort. Duplicate repeatability tests yielded a mean CV
of 4.9% for Tiw, 1.2% for Tow and 1.9% for FF over BM anatomical sites. A strong correlation (r?=0.89)
was observed between the mean Ty and T, over BM anatomical sites (Fig. 3) whereas it was
negligible in GM (r?><0.09) and between the average fat Tis and the mean Ti,, in BM (r?=0.03).
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Fig. 2. Distribution of FF, Tiw, and Taw across BM anatomical sites with each dot corresponding to each of the 15
healthy adults. FF increased gradually from the lumbar vertebrae to the femoral head with large inter-individual
variability across the cohort. The mean FF correlated with age (r?=0.70) and with body fat (assessed as FF in GM,
r’=0.67). A one-way Analysis of Variance (ANOVA) produced p-values between BM anatomical sites of <0.0001,
0.0221, and 0.4029 for FF, Tiw and Taw respectively (p=0.05 at 95% confidence), and p-values less than 0.0001
between healthy adults (HV). HV N°6 (65-yo, male) exhibited high FF, low T1iw and low Taw (65.0%/939ms/22ms,
L5), whereas HV N°12 (22-yo, female) produced low FF, high Tiwand very high Taw (24.5%/1605ms/39ms, L5).

Discussion: Even though heterogeneities in FF, T1yw and Taw Were about twice as high in BM than in
GM, the repeatability between duplicate scans produced an adequate CV of less than 5%. FF, T1 and
Tow produced significantly different results between participants. Differences in FF appeared to
correlate with age and body fat. FF and Ti results were also significantly different between BM
anatomical sites. The large spread in T,y values between healthy adults may be reduced by separating
the cohort by sex, as differences in Taw
have been previously reported in BM
between males and females[6]; the
effect of BM anatomical site, age and
body habitus should be investigated in
more detail.

Additionally, the T,y averaged over the
BM anatomical sites revealed a strong
correlation with mean Tay (Fig. 3). It is
possible that BM iron content varies
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Fig. 3. Average over the BM anatomical sites of the mean Tiw of
each ROI against the corresponding Taw for each adult. Note the
strong correlation in BM (r?=0.89) compared to the mean Tiw
(137347.5ms) vs. Tow (29.9+1.2ms) in GM (r?=0.09) for each adult.

Accounting for such confounding factors would have the benefit of narrowing the expected Tiw, Tow
and FF range in healthy adults and, through multivariate analysis, help diagnose abnormalities in BM
resulting from haematopoietic disorders.

Conclusions: This evaluation demonstrates the adequate performance of T; mapping in BM by VFA
3D Dixon-SPGR and T,w mapping by fat-suppressed, SE-EPI to complement FF assessment by IDEAL.
The heterogeneity and extent of values between healthy adults remains a challenge for the use of
gMRI in the diagnosis of BM disorders but the simultaneous acquisition of multiple quantitative
parameters may offer diagnostic clarity.
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help on the GE Premier.
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Introduction: Hyperpolarized Xenon-129 is a gaseous MRI contrast agent that enables regional
assessment of lung function[1]. Using spin-exchange optical pumping, its magnetic signal is
temporarily enhanced above thermal equilibrium, enabling images to be acquired during a breath-
hold before signal decay. This technique has shown utility in assessing conditions like long COVID[2],
COPDJ3] and asthmal4].

One of the challenges of lung imaging is the large Bo inhomogeneity at the air-tissue interfaces, which
results in image artifacts and blurring[5]. In this work, we present a straightforward approach to
integrate a Bo map acquisition in the same breath-hold as a hyperpolarized Xenon-129 ventilation scan,
and a simple reconstruction approach with Pinv-Recon[6], [7], [8].

Methods: In the same breath-hold, a high-resolution ventilation image and an integrated Bo map (low-
resolution varied echo time (TE) acquisition) were acquired. 6 hyperpolarized Xenon-129 datasets
were acquired on a 3T GE Premier scanner (GE HealthCare, Milwaukee, USA) and a flexible Tx/Rx
Xenon-129 vest coil (PulseTeq, Cobham, UK). Xenon gas was polarized for approximately 30 minutes
using a commercial polarizer (Polarean, NC, USA). Both sequences were stack-of-spirals, with
parameters for the ventilation sequence: 12 arms, FOV 400 x 400 x 250 mm, matrix 80 x 80 x 51, FA =
4° per excitation, TR/volume ~ 10 s; and the varied TE sequence: 1 arm, FOV 400 x 400 x 250 mm,
matrix 20 x 20 x 13, FA = 2° per excitation, TE = [0, 3, 5, 15] ms, TR/volume ~ 0.4s.

The low-resolution varied TE image was reconstructed with Pinv-Recon and the B, map was fitted
using the MEDI toolbox[9]. The Bomap was then masked, the signal outside of the mask was filled and
the map was smoothed and interpolated to the reconstruction matrix size of the high-resolution
dataset. To apply Pinv-Recon with By correction to the high-resolution dataset, the encoding matrix
was calculated using the known spiral trajectory (k) and the known B, map (AB,) as follows:

Encode = e~t2mkr . o—iABy(r) t(k)

where i is the imaginary unit, ris a vector of image space coordinates, and t is a time vector of the
acquisition of each k-space point, and -indicates element-wise multiplication. The reconstruction
matrix (i.e. the Moore-Penrose Pseudoinverse of Encode) was calculated using Cholesky
decomposition with Tikhonov regularization, and multiplied with the raw data with depolarization
accounted for [10]. To compare the images before and after Bo correction, image sharpness was
quantified using a gradient-based approach (imgradient3 in MATLAB with the Sobel function).

Results: Figure 1a-b shows fitting the Bo map from low-resolution varied TE images. Figure 1c-h shows
an example of a ventilation image before and after Bo correction, as well as the difference image
between the two. Table 1 summarizes the sharpness of the 6 datasets before and after B, correction,
with an average 0.56% increase in sharpness.

Discussion and Conclusion: B, off-resonance needs to be measured on a patient-by-patient basis, but
it is challenging to map at the 'H frequency due to the low proton density in the lungs. The presented
method enables straightforward measurement and correction of By off-resonance, showing improved
sharpness for the present dataset. More noticeable improvement is expected in datasets with longer
readout and more severe Bo distortion. Pinv-Recon, unlike conventional approaches such as
multifrequency interpolation[11], corrects the By distortion as a continuous function, rather than



demodulating to discrete frequencies, offering a more direct and potentially more accurate correction
of Bo distortion. Further work will involve characterizing the impact of B, correction on quantitative
metrics such as ventilation defect percentage calculation.
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Figure 1 (a) Low-resolution, varied echo time acquisitions for Bo map fitting (b) fitted Bomap (c, d)
coronal and axial views of ventilation image before Bo correction, (e, f) coronal and axial views of
ventilation image before By correction (g, h) difference between and after correction.

Image Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6
Sharpness 18911 15782 11632 14360 15285 18432
(uncorrected)
Sharpness (Bo | 5, 15832 11707 14395 15431 18545
corrected)
% increase 0.59 0.32 0.64 0.24 0.96 0.61

Table 1 Image sharpness before and after B, correction.
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Introduction: Hyperpolarized [2-*C]pyruvate has recently been shown to be a feasible method for
clinically assessing tricarboxylic acid (TCA) cycle intermediates and acetylcarnitine targeting different
organs[1], [2], [3]. However, the achievable polarization for [2-3C]pyruvate is lower than that of [1-
BClpyruvate[4] and so methods to increase the level of enhancement are desired. Previously,
Gadolinium(Gd)-based contrast agents have been used as an enhancer for [1-*C]pyruvate polarization
to significantly increase polarization and signal-to-noise ratio (SNR) achieved during dissolution
dynamic nuclear polarization (dDNP) for real-time metabolic imaging[5]. The potential gains from the
addition of Gd to [2-13C]pyruvate preparations remain unstudied and so this work aims to optimize
the polarization of [2-3*C]pyruvate through the addition of Gd.

Methods: A HyperSense hyperpolarizer (3.35T, 1.4K) (Oxford Instruments, UK) was used to polarize
samples. AH111501 was used as the electron paramagnetic agent (EPA), and Dotarem (Guerbet,
France) was used as the gadolinium-based contrast agent for the experiments. 15 mM EPA was used
in previous [1-13C]pyruvate studies and was found also to be the optimum for [2-13C]pyruvate, and the
Gd concentration was varied at 0, 0.5, 1, 2, and 3mM. Samples with each concentration underwent a
microwave frequency sweep to determine the optimal frequency for build-up. A 5 MHz step size and
60-second step duration were used, and the optimal frequency was taken as the first peak observed
during the sweep. Then, samples were polarized at their optimal frequency until they had reached
95% of their maximum polarization. The amplitude and build-up time constant were recorded. A
Bruker BioSpin 11.7T vertical bore MRI system (AVANCE 500) was used to assess the liquid state
polarization following dissolution. 8 mL of buffer made of 40 mM Tris Base, 250 uM of K,EDTA, and 60
mM of NaOH was used for dissolution. 120 seconds of 1-degree excitations (TR=1s) were used to
assess the polarization decay, followed by 10-, 20-, 30-, 10-, 20-, 30-, 40-, 50-, and 60-degree flips to
assess B;.

Results: [1-*C]pyruvate and [2-
1BClpyruvate had an optimal Gd
concentration of 2 mM and solid-
state enhancement factors of
around 1.5 (Figure 1). The dDNP
polarization percentages of the
baseline and optimal preparations
were 17.7+3.1% and 22.2 +
4.1% (p=0.04) respectively for [1-
BClpyruvate and 13.5+4.3%

Solid build-up enhancement factor

/\

-
0]
1

—
N

N
N

—1-13C Pyruvate
—2-13C Pyruvate
1-13C Pyruvate from previous study

Enhancement factor (a.u.)

1 1 1 1 1 I
and 26.3 +8.1% (p=0.02) for [2- 0 0.5 1 15 2 25 3
BClpyruvate  (Figure 2). [1- Gd concentration (mM)
3Clpyruvate had a T, = 38.5+  Fig.1.Solid build-up enhancement factor of [1-3C] and [2-33C]
1.5s for baseline and a T, = pyruvate comparing with the [1-*C] pyruvate data from the
323+ 3.8s (p=0.003) for the Gd previous study

optimized sample. [2-13C]pyruvate
had a T; = 32.1 + 1.5s for the baseline and a T; = 28.2 + 1.2s (p<0.001) for the Gd optimized
sample at 11.7T.
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[1-13C] and [2-13C]pyruvate Gd optimization polarized by HyperSense
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Fig. 2. [1-'3C] and [2-3C]pyruvate Gd optimization by HyperSense box plots

Discussion: [1-13C] and [2-13C]pyruvate had a similar solid-state enhancement factor when doped with
2mM Gd. However, their liquid state enhancement factor varied. Given the fact that the polarized
samples are vulnerable to the complex nature of the magnetic field within the lab where the 3.35T
polarizer and the 11.7T MRI system are placed side by side, it is understandable that, despite the
consistent solid-state results, the liquid-state results are more variable. Increasing the number of
experiments would likely solve this issue; however, since this is a pilot project running on an outdated
system, the results are satisfactory and clearly indicate the possible enhancement of [2-*C]pyruvate
through the addition of Gd. As expected, the T; values of [2-!3C]pyruvate were shorter than [1-
13C]pyruvate in baseline and Gd optimized samples. The decreasing trend of T; after the addition of
Gd aligns well with previous work[5]. It also validates the dissolution experiment protocol to some
extent — despite inconsistent liquid state polarization, the T, values were consistent and expected.
Future experiments are planned to be performed on a higher field strength polarizer - SpinAligner
(6.7T, 1.4K) (Polarize, Denmark), and a clinical polarizer, GE SpinLab (5T, 0.8K) (GE Healthcare, USA).

Conclusions: The addition of Gd to [2-13C]pyruvate had a similar behaviour to [1-*C]pyruvate in the
solid and liquid states, in terms of the enhancement factors and optimal Gd concentration. Future
work will assess Gd optimization on state-of-the-art higher-field-strength platforms.
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Comparison of segmentation-based and ROI-based quantification of pancreatic PDFF
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Introduction: Studies have shown that pancreatic fat is both elevated in, and a risk factor for, type 2
diabetes [1]. Consequently, there is an increasing interest in accurately quantifying pancreatic fat.
Three distinct types of pancreatic fat are recognized: intra-pancreatic fat (within the pancreatic tissue),
inter-pancreatic fat (between lobules), and peri-pancreatic fat (surrounding the pancreas) [2].

Proton density fat fraction (PDFF) measured from chemical shifted-encoded MRI sequences are
gaining in popularity due to their ability to non-invasively quantify fat in abdominal organs, including
the pancreas [3]. Many studies use manually placed ROIs to quantify pancreatic fat in PDFF maps. In
many ROI-based protocols, operators tend to place ROIs in more uniform regions of the pancreas with
a lower signal as they appear on the PDFF maps and are therefore more tuned to measure intra-
pancreatic fat [4]. More recently, methods using automated-segmentation masks have been
proposed. As such methods cover the entire pancreas, they may capture multiple fat compartments,
meaning that PDFF values measured from these two methods may not be directly comparable. Here,
we investigate the differences in pancreatic PDFF measures obtained from ROI and segmentation-
based approaches and propose a method to improve alignment between both approaches when
quantification of intra-pancreatic fat is of particular interest.

Methods: 59 subjects with type 2 diabetes were scanned on a Siemens Prisma 3T scanner. Five PDFF
slices were obtained using 2D multi-echo gradient echo acquisitions (12 echoes, TE/ATE/TR:
1.1,1.1,15ms, slice thickness 10mm) and processed with both an ROI-based and segmentation-based
approach. In the ROIl-based approach [4], a single rater placed three ROIs in the centre of the
pancreatic head, body, and tail, avoiding regions of visceral fat. In the mask-based method, a
pancreatic segmentation mask automatically generated from the water image of a 3D T1-weighted
Dixon SPGR scan, using a previously described model [5] was re-sampled onto the five PDFF slices,
using positional information from the DICOM headers. The slice with the largest pancreatic area was
selected and the mask was further pruned by removing pixels with PDFF values >70% and a binary
closing operation (using a circular structuring element with a radius of 1 pixel). Figure 1 (d) shows an
example case processed with the ROI- and mask-based methods.

To compare the mask-based and ROIl-based measurements, different percentiles of PDFF were
extracted from the segmentation mask and compared with the ROI-based measurement using a
Bland-Altman analysis and the intra-class correlation coefficient (ICC). To obtain the percentile
minimising the bias, a training set of 39 cases was used. The remaining 20 cases were used as a
validation set and processed with the ROI-based protocol by a second operator to measure inter-rater
variability.

Results: Median segmentation mask PDFF was systematically higher than the ROI-based estimates
with a bias [lower, upper limits of agreement (LoA)] of 8.50 [-4.09, 21.10], 7.07 [-4.14, 18.28]
percentage points in the training and test cohorts, respectively. In the training cohort, the 25™
percentile was found to minimise both the bias and LoA. Within the testing cohort (see Figure 1), the
bias [upper, lower LoA] between the PDFF mask 25™ percentile and ROI-based PDFF was 1.29 [-4.37,
6.95] percentage points. In the test dataset, ICC for the median and 25™ percentile PDFF vs the ROI-
based PDFF was 0.60 and 0.91, respectively, and the ICC for the inter-rater ROI-based PDFF was 0.92.

Discussion: The median segmentation mask PDFF is systematically higher than manual ROI-based
values. This is likely because the ROI-based measurements tend to capture intra-pancreatic fat, while
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segmentation-based masks also encompass inter-lobular and peri-pancreatic fat. Taking the 25%
percentile of PDFF from the masks provides closer alignment with the ROI-based approach, giving an
ICC comparable to that of the inter-rater ROI-based analysis, and may therefore be preferable in
studies which are focused on intrapancreatic fat specifically. We also observed that discrepancies
between the ROl and mask-based measurements increased at higher PDFF values, as did the inter-
rater variability. This likely results from the reduced visibility, and increased heterogeneity, of the
pancreas in PDFF maps in high-fat cases, making ROI placement more challenging. In such cases, a
mask-based approach obtained from segmentations of a different acquisition (e.g. the water DIXON
images used here) may be more robust.

Conclusion: Measuring median pancreatic PDFF with a segmentation mask produces higher values
than ROI-based approaches, most likely due to the latter capturing only the intra-pancreatic fat while
the former also includes the inter-lobular and peri-pancreatic fat compartments. Using the 25%
percentile from a mask-based approach may be preferable in studies focused specifically on intra-
pancreatic fat.
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Figure 1: Bland-Altman plots comparing (a) median mask-based vs ROI-based PDFF (b) 25" percentile
mask-based vs ROI-based PDFF (c) ROl-based PDFF from two different analysts, in the 20 test cases.
(d) An example case showing ROI-based and mask-based method.
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Introduction: Liver glycogen concentration (LGly) can indicate altered metabolism in children, and 3C
MRS is a non-invasive alternative to biopsy for measuring LGly (1). Currently reproducibility measures
have only been performed in adults (2,3). This study aimed to assess inter- and intra- reproducibility
for participants and raters of *C MRS LGly measures made in pre-pubescent children and to assess
agreement between manual and automated analysis.

Methods: 24 healthy children aged 8-12yrs (13F,11M) were recruited as part of a larger study (2),
each attended 2 visits (V1 and V2), with 2 session per visit, separated by >5days. Each visit
comprised of 2 sessions, Figure 1.

~20:00 hrs ~08:00 hrs ~20:00 hrs ~08:00 hrs
| 3h Overnight Fast I >5 Days | 3h I Overnight Fast I
| | [ | I |
Tailored Vpy V1am Tailored VZ2py VZpp
Meal Meal

Figure 1 — Study timeline
Acquisition: 3 C-MR spectra were collected using a 15cm single-loop *3C surface coil (PulseTech) on a
Philips 3T Achieva. A 3C-labeled urea sample was used to confirm positioning and as a reference
signal. Spectra were obtained using an unlocalized pulse-acquire sequence with narrow bandwidth
pencil beam shimming. The urea signal was measured with TR=1500ms, FA=25°, bandwidth = 7kHz,
sample points 1024, NSA =20. LGly were measured with TR=280ms, FA=95°, bandwidth =7kHz,
sample points 1024, NSA = 3072. All spectra were analysed using in-house MATLAB (MathWorks,
2023b) scripts by two raters (Raterl — newly trained and Rater2 — experienced and provided
training) and by an automated analysis pipeline. For all analyses, LGly was estimated by comparison
of the area under the glycogen doublets (scaled to the urea peak) to a 200mmol/Liver glycogen
phantom.
Variability: Each rater performed glycogen fitting 3 times per spectra to assess intra-rater variability,
all other variability measures used the average of repeats; automated analysis was performed once.
This study assessed variability using Coefficient Of Variation (COV) and Intraclass Correlation
Coefficient (ICC, IBM SPSS) values.
Results: LGly values ranged from 257-742 mM, 251-675 mM, and 263-705 mM at T-PM and 184-538
mM, 186-508 mM, and 180-509 mM at T-AM for Raterl and Rater2 and automated analysis
respectively (Figure 3). Variability measures are shown in Figure 4, Inter-rater ICC = 0.96.
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Figure 3 - Average hepatic glycogen concentrations from both raters (Raterl was newly trained by
Rater2) and automatic analysis for all visits and time points. Whiskers show the full range of data,
the box expands from the 25th to 27th percentile, and the central line represents the median value.
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Figure 4 - Variability in measures, pink is used for rater 1, blue for rater 2 and purple for automatic
analysis. Left — COV for inter-subject, intra-subject and intra-rater variability for Visit 1 and 2 for
evening (PM) and morning (AM) scan sessions. Right- ICC values for intra-subject variability for
evening (PM) sessions compared to morning (AM) and intra-rater variability across all visits and
timepoints.

Discussion: Fasted and fed LGly in this study were larger than previously measured in children (3,4).
Intra-subject ICC values showed moderate agreement (Raterl T-PM showed poor agreement), and
variability was similar (21 £2 %) for T-PM and T-AM across all raters. The similar COV for T-PM and T-
AM suggests that providing a tailored meal is adequate for ensuring reproducibility where an
overnight fast is not possible. Intra-subject reproducibility was better than that seen in adults for
fasted measures and worse after the tailored meal, (here ~ 19%, adults = 35% (5)), perhaps
indicating greater variation in children’s postprandial gastric emptying and metabolic rates. Inter-
subject reproducibility was similar across all sessions and raters (23 +3 %) and was equal to or
slightly larger than intra-subject variations, as expected.

Intra-rater ICC values showed excellent agreement for both raters, demonstrating the robustness of

the analysis method. However, the increased expertise of Rater2 is shown by their COV which was

half that of Raterl (5% and 11%, respectively). Across all analysis methods, the inter-rater ICC value

suggests excellent agreement (0.96).

Conclusions: LGly were higher than previously measured in literature for children (3,4), though the

paucity of literature makes it difficult to draw any conclusions. Overall, LGly in children were found

to be reproducible across visits and raters. Effects of differences between raters were minimal
compared to intra-subject and inter-subject variations and can be mitigated using automated
analysis, which showed consistent agreement with both raters.

Acknowledgements: The authors want to thank Nestle for funding this work and the MRC IMPACT

DTP for funding AS studies.
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Purpose: Alginate hydrogels present potential for application in anthropomorphic
tissue-mimicking phantoms due to their tuneable physical and magnetic properties [1].
Their capability to mimic tissue-relevant relaxation times makes them well-suited for
applications in quantitative magnetic resonance imaging (gMRI), where inter-site
reproducibility and consistency are essential for reliable biomarker validation and early
cancer detection [2]. Despite their widespread use in biomedical applications [3], the
long-term physical and functional stability of alginate-based phantoms needs to be fully
characterized. This study aims to quantitatively assess the temporal stability of alginate
breast phantoms by monitoring changes in MRI parameters, including longitudinal (T,)
and transverse (T,) relaxation times, and RF field homogeneity, over an initial 28-day
period. This work addresses the crucial need for standardized and reproducible gMRI  Figure 1: MR image of the
calibration materials, especially in breast imaging applications, where reliable phantom (TE =7 and TR = 500
relaxation times reference values are needed for radiotherapy treatment planning and ms)

quantitative lesion assessment.

Methods: The prototype phantom consisted of twelve 15 mL Falcon tubes filled with 2% (w/v) alginate in saline (1.17%
NaCl). To achieve target breast tissue relaxation times [4], two doping formulations were used: 0.42 mM NiCl, (for T,
modulation) and 1.14 mM MnCl, (for T, contrast) to mimic fibroglandular tissue (FGT), and 3.10 mM NiCl, (T1) and
1.13 mM MnCl; (T,) to mimic adipose tissue characteristics. MRI data of the phantom (Fig. 1) were acquired on days O,
14, and 28 using spin echo sequences (T;: TR = 500—-3500 ms, TE = 7 ms; T,: TR =500 ms, TE = 7-350ms) on a 3 T
Siemens Prisma. A freshly prepared phantom with the same composition was scanned at each timepoint to assess
formulation reliability and temporal stability. Phantoms were equilibrated at scanner room temperature (19.2-20.2 °C)
for at least 24 hours prior to imaging. Relaxation times were estimated using saturation recovery (T;) and mono-
exponential decay (T») models, with B; correction applied to account for RF inhomogeneity. Phantom reliability was
assessed using the coefficient of variation (CV), whilst gel stability was evaluated using independent two-sample t-tests
comparing days 0 and 28.

Results: Phantom reliability was high across sessions (days 0, 14, and 28), with T; and T> measurements demonstrating
strong longitudinal consistency for both FGT- and adipose-mimicking phantoms (Fig. 2), particularly in the FGT
phantoms (CV = 0.28%). Regarding phantom stability, a significant increase in Ty was observed in adipose-mimicking
phantoms (p < 0.05), while no significant change was detected in the FGT phantoms (Fig. 3). T» values declined in both
phantom types (A = -10.44+15.68% and phantom Relability Analysis

-9.83 £ 12.67%), though these changes were not T C S e
statistically significant.

Discussion: The phantoms demonstrated both 7
reliability and gel stability, making them suitable ¢
tools for longitudinal gMRI assessment. The T,
increase  observed in  adipose-mimicking
phantoms likely reflects dopant redistribution or
mild oxidation [5], whereas the greater stability
(A = 6.66 + 4.54%) of FGT-mimicking phantoms
suggests that lower NiCl, content may inhibit Figure 2: Reliability analysis of relaxation times for adipose and
such effects. T, reductions may reflect gel fibroglandular phantoms across three time points

compaction or altered water mobility during

aging [6], though high variability in standard deviation limits interpretation. The stable B; correction and narrow
temperature range suggests that observed relaxation changes likely reflect intrinsic material behaviour rather than
technical-induced variability. Despite relaxation times being systematically elevated (~13—-15%) relative to literature

T; value (ms)

i CV: 2.03%

Target Adipose
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values (Fig. 4) [3], their internal consistency across phantom types supports their use in comparative or calibration-
Room Temperature: Day 0 = 19.6°C, Day 14 = 19.2°C, Day 28 = 20.2°C focused gMRI studies. These findings highlight the

7. Retaxation Time Stability T Relaxation Time Stability potential of alginate-based phantoms as low-cost,

tuneable models for advancing gMRI, by providing a
means to assess the reliability of MRI relaxation times
that mimic those of breast tissue. However, the
relatively short 28-day monitoring period may
underestimate long-term degradation, and variability
in T2 measurements suggests that future work should
(B0 ow i wmon ) investigate strategies to improve gel uniformity and

Sttt tp 0 =00t chemical stability. Additionally, exploring a broader

Figure 3: Longitudinal relaxation time analysis (gel stability) range of dopants and storage conditions could further

showing changes in Ti and T, over 28 days, with statistical  |ofine phantom stability and extend applicability to a
comparison between initial and final time points . . .
wider set of imaging contexts.

2000

g8 3

1000 A:-6.66:4.54%

A: -10,44=15.68% A:-9,83212,67%

o
S e B
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T: Relaxation Time (ms)
T2 Relaxation Time (ms)

A: +18.55£3.47%

s

Target Adipose % Target FGT

Tissue Type  Metric Phantom Value (ms) Literature Value (ms) % Difference + SD
TargetFGT T, 1643.1 + 62.1 14448 + 927 13.79% + 7.4% Conclusion: This study confirms that alginate-based
breast phantoms provide reproducible qMRI

Target FGT T2 63.42 £ 7.89 54.36 £ 9.35 14.29% £ 3.03%

Target Adipose Ty 428,38 £ 18,12 366,78 £ 7.75 15.50% * 4.99% measurements over Short tlmescales Whlle revea“ng
, sensitivity to material aging, particularly in T,

Target Adipose T 61.13 £ 253 52.96 £ 1.54 13.36%+0.68%

behaviour. These results underscore the need for
Figure 4: Deviation of phantom relaxation times from literature periodic reassessment of phantom properties in
values for breast tissue relaxation properties longitudinal or multi-centre gMRI studies to ensure

sustained measurement reliability. Continued
refinement of phantom composition will be key to enhancing long-term stability for use in standardizing breast imaging
protocols and quantitative biomarker development.
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Enhanced SNR in Ultra-Low Field MRI using novel Composite Refocusing Pulses
Finn Aubrey Conboy ? Samira Bouyagoub %2 [tamar Ronen 2 lvor Simpson 3 Nicholas G Dowell 12
L University of Sussex, Clinical Imaging Sciences Centre, Brighton, BN1 9RR, UK
2 Brighton and Sussex Medical School, BSMS Teaching Building, Brighton, BN1 9PX, UK
3School of Engineering and Informatics, University of Sussex, BN1 9QJ, UK

Aim: To increase signal-to-noise ratio (SNR) in Ultra-Low Field (ULF) MRI by compensating for magnetic
and radiofrequency field inhomogeneities (ABo and AB,) using a novel composite refocusing pulse
(CRP) developed through an optimization framework.

Introduction: ULF scanners offer greater accessibility, lower cost and mobility than high field (HF)
systems. However, since NMR signal scales with magnetic field strength, ULF scanners suffer from
reduced SNR, limiting clinical use. This low SNR is further reduced by two inhomogeneities: (1) ABo,
due to magnet design in ULF systems; (2) AB1, highest in areas near or outside the coil. SNR can be
improved by replacing square pulses with CRPs in a 50mT scanner [1]. CRPs, comprised multiple pulse
segments with varying phase and flip angles, can offer greater insensitivity to ABg and AB, than square
pulses. While CRPs are well-established in HF spectroscopy, their direct application to ULF is limited
by longer pulse durations (tpuise) leading to narrower excitation bandwidths. HF spectroscopy typically
uses short pulses (10s of us), whereas ULF systems use longer pulses (100s of us).

FWHM = 1.21

(1)
pulse

CRPs are often designed using average Hamiltonian theory to emulate RF pulses with improved
insensitivity to ABo and AB,. To simplify optimization, many CRPs use only 180° segments, since any
odd number of elements - regardless of phase - produces a refocusing pulse. However, this approach
results in longer pulses, limiting ULF performance (Eg.1). To address this, we developed a six-element
CRP (6seg) not limited to 180° flip angles to enhance robustness to field inhomogeneities and so
improve signal homogeneity and SNR across the imaging volume.

Method: Bloch equation simulations were used to evaluate magnetization evolution during pulse
optimization. CRPs were optimized using scipy.minimize with the trust-constr method [2], a gradient-
based optimizer that adjusts the flip angle and phase of each pulse element to minimize the loss
function. This quantified deviation between final and target magnetization vectors. Each optimization
iteration had two stages:

1. CRP was evaluated under ideal conditions (ABy=0Hz and AB;=100%) to determine whether it
acted as an effective refocusing pulse. If the resulting loss exceeded 5%, the pulse was rejected
by assigning a large penalty.

2. Pulses that passed the refocusing pulse check were evaluated for insensitivity by computing

total loss across a range of ABo and AB, inhomogeneities, as given by:
N
_ 1 O pp O 2

L= NfZ”Mfinal(ABO ’ABl ) - Mtarget” (2)

combinations =1
(where Ncombinations, Minal and Miarget represent the number of combinations, final magnetization state
and target state respectively). 6seg was optimized across 24 off-resonance frequencies (-2.5 to
+2.5 kHz) and 8 B, scaling factors (0.8 to 1.2), resulting in 192 equally spaced combinations. The CRP,
with the lowest loss function that satisfies the refocusing condition, was selected after several
iterations. The final CRP included flip angles ranging from 75° to 180°, selected to improve robustness

to ABo (Table 1).

Equipment: Data were collected using a 50mT MGNTQ scanner [3] equipped with a Halbach
permanent magnet array and Kea2 Spectrometer with solenoid head coil using a Siemens spherical
Phantom D170 (1.25 NiSQ4-6H,0 per 1000g distilled water).

Experiment: A 3D TSE pulse sequence was modified to incorporate the CRPs. Based on prior work, LT
demonstrated highest SNR improvement and was used as a benchmark. We compared LT with 6seg,
and a conventional square pulse. Phantom segmentation was manually performed using in-house
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software.

Within the imaging volume, ABo reached up to 3 kHz off-resonance while the phantom extended

beyond the coil leading to regions of high AB; (Fig. 1b). Signal drop-off was plotted along the

phantom’s superior—inferior axis (Fig. 2a).
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Fig. 1. (a) labelled diagram of experiment. (b) Table 1: Refocusing pulses evaluated in this work

Image showing phantom extruding from phantom.

To assess voxel-wise signal distribution, a normalized histogram of phantom voxel intensities was
generated (Fig.2b), showing probability density across the entire imaging volume showing signal
intensity and homogeneity. To compare the pulses performance, the mean signal was used to show
overall signal changes, and peak height was used to measure signal homogeneity in the histogram.

Results:
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Fig.2. (a) Average signal of each slice against distance from top of the coil, normalized to peak
square signal. Dashed line represents where the phantom leaves the coil. (b) Normalized
histogram of signal intensity. TSE 3D sequence, with 150 bins, bin width of 67, TE of 20ms, Tr
500ms, ETL of 4, voxel size of 2x2x5mm. Lines represent mean signal intensity values of the
histograms, Square=1834, LT=1975, 6seg=1977

LT and 6seg showed an 8% average signal increase over the square pulse across the entire phantom
(Fig. 2b). However, 6seg showed greater insensitivity to ABo and AB; with peak height increases of 25%
and 48% compared to LT and square. LT retained highest signal beyond the coil, with 10% increase
over 6seg at 150 cm, indicating greater AB, insensitivity (Fig. 2a).

Discussion and Conclusion: We have shown that our approach, 6seg, can yield greater signal
homogeneity for ULF MRI while maintaining increased signal of prior CRP, delivering superior signal
homogeneity in the presence of ABy and AB;, without extending scan time.
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MRI Fun Day: Pilot Study of a Paediatric-Focused Educational Event

Neslihan Isleyen’, Laura Bortolotti2, Adrian Tang3, Joanne Smith4, Racheal Weithers?, Mehvish Alavi*

Introduction: MRI scans can trigger anxiety in paediatric patients due to loud noise, confined spaces,
and unfamiliar environments, leading to motion artefacts, failed scans, and sedation-related risks [1-4].
The MRI Fun Day at James Cook University Hospital, supported by BIC- ISMRM, aimed to reduce scan
anxiety and improve children’s experience through play-based education [1-4].

Methods: The event included an inflatable mock scanner and interactive stations such as teddy bear
scans, puzzles (Figs 3 and 4), roleplay, and colouring. Staff facilitated age-appropriate activities for
children and parents prior to MRI appointments. Qualitative feedback was gathered from both groups
(Fig 1). A clinical physicist captivated children with an interactive demonstration explaining MRI
principles (Fig 2). Real brain scan images were displayed to spark curiosity and demystify the imaging
process. A Spider-Man figure added a playful touch, helping children connect with the science in a fun,
relatable way. The highlight for many was exploring the inflatable MRI scanner—an immersive, hands-
on experience that allowed children to step inside a life-sized replica, easing anxiety and turning
learning into adventure (Fig 4). Parental consent was obtained for use of all images.

Results: Eighteen children (aged 5—11) participated; 14 had scans the same day. All engaged with at
least two activities, and all scanned successfully without sedation or early termination. Staff reported
smoother handling and fewer motion artefacts (Fig 6). These findings support evidence linking patient-
centred preparation with improved scan outcomes [1-3].

Discussion: MRI procedures can provoke anxiety due to noise, confinement, and unfamiliarity, often
compromising image quality. Sedation or repeat imaging poses risks, especially for paediatric patients
[3,4]. Literature highlights non-pharmacological strategies like behavioural preparation to improve
compliance and scan success [1—4]. This initiative helped children build familiarity and control in a safe,
non-clinical setting. Feedback suggested improved psychological readiness and perceptions of MRI—
from intimidating to manageable and even fun. Results reflect broader evidence on the benefits of
preparatory interventions [1-4], and demonstrate the potential of a scalable, low-cost model to
enhance paediatric imaging care [4].

Conclusions: A play-based, educational approach can reduce anxiety, improve scan outcomes, and
strengthen rapport with paediatric patients. Broader rollout is recommended to assess long-term
effects on sedation rates, scan quality, and satisfaction [1-4].

Acknowledgements: We thank the British & Irish Chapter (BIC) ISMRM for their generous support.
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Imaging glucose uptake and lactate production in a chick CAM model of glioblastoma
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"Molecular and Clinical Cancer Medicine, 2Liverpool Shared Resource Facilities, °Biochemistry, University
of Liverpool, 3Walton Centre NHS Trust, Liverpool, “University of Pennsylvania, USA

lintroduction: Glioblastoma (GBM) is an aggressive brain tumour characterised by extensive hypoxia
and a metabolic shift towards glycolysis, contributing to treatment resistance. The chick chorioallantoic
membrane (CAM) model is a valuable platform for studying tumour-host vascular interactions and is
compatible with in vivo imaging. This study integrates [18F]FDG-PET and 'H MRS to evaluate glucose
uptake and lactate production in GBM-CAM xenografts and their association with hypoxia markers.

Methods: GBM xenografts were established by implanting 2x108 U-251 cells onto the CAM at embryonic
day 7 (E7). Tumours were imaged with [18F]FDG-PET on E12, followed by lactate MRS using image-
selected in vivo spectroscopy (ISIS) and selective multiple quantum coherence (SelIMQC) on E13-E14.
18 eggs were analysed with [18F]JFDG-PET, and 13 survived to E13 for lactate MRS. Glucose uptake
was quantified using the sum of the accumulated maximum standardized uptake values (SUVtotal), and
lactate was assessed as lactate/water ratios (RelLac). A Pearson correlation was used to asses the
correlation between SUVtotal and RelLac. Tumours were harvested for mMRNA expression analysis and
histological assessment (H&E and IHC staining).

Results: GBM xenografts exhibited increased expression of glycolytic genes GLUT1, PDK1, LDHA, and
the proangiogenic marker VEGFA compared to U-251 cells in vitro (Figure 1A), indicating a metabolic
shift towards glycolysis. [18F]JFDG-PET detected glucose uptake in 94% (17/18) of tumours, while lactate
MRS detected lactate in 69% (9/13). H&E staining revealed a highly cellular tumour morphology, and IHC
showed strong CAIX staining (Figure 1B), a hypoxia marker localised to the tumour core. A significant
negative correlation was observed between SUVtotal and RelLac (R =-0.71, P = 0.033) (Figure 2).

Discussion: The increased expression of glycolytic and proangiogenic genes suggests a metabolic
adaptation of GBM cells upon implantation onto the CAM, perhaps occurring due to the hypoxic
microenvironment. The negative correlation between FDG and lactate may suggest distinct spatial
distributions of glucose uptake and lactate accumulation. Alternatively, this could be due to differences in
glucose transporters (measured by PET) versus steady state lactate values (combination of production
and clearance) measured by MRS. Given that lactate preferentially accumulates in necrotic, less cellular
regions, whereas glucose uptake is associated with viable tumour tissue, these findings align with
previous observations in patients and in rodent models. The presence of CAIX further supports the role of
hypoxia in driving glycolytic metabolism. The negative correlation may warrant further investigation into
vascularisation dynamics and lactate clearance mechanisms within the CAM model.

Conclusion: These findings demonstrate that GBM-CAM tumours are hypoxic and exhibit a metabolic
shift to glycolysis. [18F]FDG-PET and lactate MRS provide complementary insights into tumour
metabolism. Further studies on tumour-host vascular relationship are needed to better understand these
metabolic changes within the tumour.

Meet the presenter bio (50 words)

I’'m a final year PhD student investigating the role of hypoxia in GBM vasculature and glycolytic
metabolism, two critical and highly connected facets of the tumour microenvironment. I'm based at
University of Liverpool, Centre for Preclinical Imaging, where | investigate these features in a chick-CAM
model using MRI, MRS and [18F]FDG-PET.
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Figure 1. GBM-CAM xenografts are hypoxic and increase expression of genes involved in

glycolytic metabolism. (A) GLUT1 involved in glucose transport; PDK1, phosphorylates pyruvate
dehydrogenase for ubiquitination, preventing conversion of pyruvate to acetyl-coA; LDHA1, converts
pyruvate to lactate; and VEGFA, promoting angiogenesis to restore oxygen and nutrient supply. (B)
Representative image of strong CAIX staining in CAM tumour core, surrounding a necrotic core (500 uM)

(i) and (50 pM)(ii). Patient GBM showing strong perinecrotic CAIX staining (X200), taken from Haapasalo
et al., 2020 (iii).
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Figure 2. Lactate detection and ['®F]JFDG uptake in GBM-CAM xenograft. (A) Representative image
of voxel placement above the site of the tumour with red box denoting voxel placement and lactate peak
at 1.3 ppm. (B) Uptake of ['8F]FDG into the xenograft after injection of 8 +2 MBq ['®F]FDG into a large
vessel on EDD13. (C) Strong negative correlation between SUVsum and relative lactate.
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